目录高考资源网ks5u 考试无忧网高考资源网 高中数学免费题库网站 学科网高中数学数学 高考资源网数学学科网
《统一》,上面应该有高中的
《黄牛课件》也是个不错的网站
也可以上友州携上《大象》
关迹纤键是看你要哪方好伏面的学习网站
高中数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料,包括:试顷携题试卷雀皮伏、课件、教材、、各大名师网握渗校合集。
高中数学
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件.
(1)理解集合、子集、补集、交集、并集的概念;了解空集和的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1.基本概念:集合、元素;有限集、无限集;空集、;符号的使用.
2.集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
集合的性质:
①任何一个集合是它本身的子集,记为 ;
②空集是任何集合的子集,记为 ;
③空集是任何非空集合的真子集;
如果 ,同时 ,那么A = B.
如果 .
[注]:①Z= {整数}(√) Z ={全体整数} (×)
②已知集合S 中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N; A= ,则CsA= {0})
③ 空集的补集是.
④若集合A=集合B,则CBA =, CAB=CS(CAB)= D ( 注 :CAB=).
3. ①{(x,搏掘y)|xy =0,x∈R,y∈R}坐标轴上的点集.
②{(x,y)|xy<0,x∈R,y∈R 二、四象限的点集.
③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.
[注]:①对方程组解的集合应是点集.
例:解的集合{(2,1)}.
②点集与数集的交集是 . (例:A ={(x,y)| y =x+1}B={y|y =x2+1}则A∩B = )
4. ①n个元素的子集有2n个.②n个元素的真子集有2n -1个. ③n个元素的非空真子集有2n-2个.
5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题 逆命题.
②一个命题为真,则它的逆否命题一定为真. 原命题 逆否命题.
例:①若 应是真命题.
解:逆否:a = 2且液亮 b = 3,则a+b = 5,成立,所以此命题为真.
② .
解:逆否:x + y =3 x = 1或y = 2.
,故 是 的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围.
3.例:若 .
4.集合运算:交、并、补.
5.主要性质和运算律
(1)包含关系:
(2)等价关系:
(3)集合的运算律:
交换律:
结合律:
分配律:.
0-1律:
等幂律:
求补律:A∩CUA=φA∪CUA=U CUU=φ CUφ=U
反演律:CU(A∩B)= (CUA)∪(CUB) CU(A∪B)= (CUA)∩(CUB)
6.有限集的元素个数
定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.
基本公式:
(3) card(UA)= card(U)- card(A)
(二)含绝对值不等式、一元二次不等式的解法及延伸
1.整式不等式的解法
根轴法(零点分段法)
①将不等式化为a0(x-x1)(x-x2)…(x-xm)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
(自右向左正负相间)
则不等式 的解可以根据各区间的符号确定.
特例① 一元一次不等式ax>b解的讨论;
②一元二次不等式ax2+box>0(a>0)解的讨论.
二次函数
( )的图象
一元二次方程
有两相异实根
有两相等实根
无实根
R
2.分基埋核式不等式的解法
(1)标准化:移项通分化为 >0(或 <0);≥0(或 ≤0)的形式,
(2)转化为整式不等式(组)
3.含绝对值不等式的解法
(1)公式法: ,与 型的不等式的解法.
(2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.
4.一元二次方程根的分布
一元二次方程ax2+bx+c=0(a≠0)
(1)根的“零分布”:根据判别式和韦达定理分析列式解之.
(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.
(三)简易逻辑
1、命题的定义:可以判断真假的语句叫做命题。
2、逻辑联结词、简单命题与复合命题:
“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” ) 。
3、“或”、“且”、“非”的真值判断
(1)“非p”形式复合命题的真假与F的真假相反;
(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;
(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.
4、四种命题的形式:
原命题:若P则q;逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。
(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知p q那么我们说,p是q的充分条件,q是p的必要条件。
若p q且q p,则称p是q的充要条件,记为p⇔q.
7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。
高中数学第二章-函数
考试内容:
映射、函数、函数的单调性、奇偶性.
反函数.互为反函数的函数图像间的关系.
指数概念的扩充.有理指数幂的运算性质.指数函数.
对数.对数的运算性质.对数函数.
函数的应用.
考试要求:
(1)了解映射的概念,理解函数的概念.
(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.
(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.
§02. 函数知识要点
一、本章知识网络结构:
二、知识回顾:
(一) 映射与函数
1. 映射与一一映射
2.函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.
3.反函数
反函数的定义
设函数 的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= (y). 若对于y在C中的任何一个值,通过x= (y),x在A中都有唯一的值和它对应,那么,x= (y)就表示y是自变量,x是自变量y的函数,这样的函数x= (y) (y C)叫做函数 的反函数,记作 ,习惯上改写成
(二)函数的性质
⒈函数的单调性
定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,
⑴若当x1 ⑵若当x1 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性 7. 奇函数,偶函数: ⑴偶函数: 设( )为偶函数上一点,则( )也是图象上一点. 偶函数的判定:两个条件同时满足 ①定义域一定要关于 轴对称,例如: 在 上不是偶函数. ②满足 ,或 ,若 时, . ⑵奇函数: 设( )为奇函数上一点,则( )也是图象上一点. 奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如: 在 上不是奇函数. ②满足 ,或 ,若 时, . 8. 对称变换:①y = f(x) ②y =f(x) ③y =f(x) 9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如: 在进行讨论. 10. 外层函数的定义域是内层函数的值域. 例如:已知函数f(x)= 1+ 的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是. 解: 的值域是 的定义域 , 的值域 ,故 ,而A ,故 . 11. 常用变换: ① . 证: ② 证: 12. ⑴熟悉常用函数图象: 例: → 关于 轴对称. → → → 关于 轴对称. ⑵熟悉分式图象: 例:定义域 , 值域 →值域前的系数之比. (三)指数函数与对数函数 指数函数 的图象和性质