当前位置: 首页 > 所有学科 > 数学

九年级上数学知识点,九年级上册数学重要知识点

  • 数学
  • 2023-07-14

九年级上数学知识点?1、以定点为圆心,定长为半径的点组成的图形。2、在同一平面内,到一个定点的距离都相等的点组成的图形。二、圆的各元素 1、半径:圆上一点与圆心的连线段。2、直径:连接圆上两点有经过圆心的线段。3、那么,九年级上数学知识点?一起来了解一下吧。

初中数学上册知识点总结

伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。

初三新学期数学知识点

一元一次方程:

①在一个方程中,只含有一个未知数,并且未知数的指数是

1、这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:

去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

2、不等式与不等式组

不等式:

①用符号”=“号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

九上数学知识点总结笔记

#初三#导语: 在初中阶段学习方法的重要性体现的尤为突出,因为学习的难度加深、灵活性加大,不能单凭死记、死学,要讲究记忆的方法,注意对知识的消化和理解。下是整理的沪教版九年级上册数学知识点【四篇】,希望对大家有帮助。

数学知识点:一元二次方程

1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.

2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.

3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:

Δ>0 <=> 有两个不等的实根;

Δ=0 <=> 有两个相等的实根;

Δ<0 <=> 无实根;

4.平均增长率问题--------应用题的类型题之一 (设增长率为x):

(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.

(2)常利用以下相等关系列方程: 第三年 = 第三年

或第一年+第二年+第三年=总和.

数学知识点:二次根式

二次根式:一般地,式子 叫做二次根式.

注意:(1)若 这个条件不成立,则 不是二次根式;

(2) 是一个重要的非负数,即;≥0.

2.重要公式:(1) ,(2);

3.积的算术平方根:

积的算术平培没方根等于积中各因式的算术平方根的积;

4.二次根式的乘法法则: .

5.二次根式比较大小的方法:

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小.

6.商的算术平方根: ,

商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

7.二次根式的除法法则:

(1) ;(2) ;

(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.

8.最简二次根式:

(1)满足下列两个条件的二次根式,叫做最简二次根式,

① 被开方数的因数是整数,因式是整式,

② 被开方数中不含能开的尽的因数或因式;

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

(4)二次根式计算的最后结果必须化为最简二次根式.

10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.

12.二次根式的混合运算:

(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.

数学知识点:解直角三角形

.三角函数的定义:在RtΔABC中,如∠C=90°,那么

sinA= ; cosA= 派中卖;

tanA= ; cotA= .

2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么尘逗:

sinA=cosB; cosA=sinB; tanA=cotB; cotA=tanB.

3. 同角三角函数关系:

sin2A+cos2A =1; tanA•cotA =1. tanA=

4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.

5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数值,要熟练记忆它们.

数学知识点:旋转

1、概念:

把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

旋转三要素:旋转中心、旋转方面、旋转角

2、旋转的性质:

(1) 旋转前后的两个图形是全等形;

(2) 两个对应点到旋转中心的距离相等

(3) 两个对应点与旋转中心的连线段的夹角等于旋转角

3、中心对称:

把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

4、中心对称的性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

(2)关于中心对称的两个图形是全等图形.

5、中心对称图形:

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

6、坐标系中的中心对称

两个点关于原点对称时,它们的坐标符号相反,

即点P(x,y)关于原点O的对称点P′(-x,-y).

九年级上册数学所有知识点

初三数学上册知识点1

三角形的外心定义:

外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

三角形的外心的性质:

1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;

2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;

3、锐角三角形的外心在三角形内;

钝角三角形的外心在三角形外;

直角三角形的外心与斜边的中点重合。

在△ABC中

4、OA=OB=OC=R

5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

6、S△ABC=abc/4R

初三数学上册知识点2

不等式的概念

1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法。

不等式基本性质

1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

九年级上册数学重点知识归纳

学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个差兆脚印的踏,攀登一层一层的台阶,才能实现学习的理想。下面就是我为大家梳理归纳的知识,希望能够帮助到大家。

九年级上册数学知识点归纳一

圆的定义

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质

1、圆的对称性

(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

九年级上册数学主要内容

【第一章实数】

一、重要概念1.数的分类及概念数系表:

说明:"分类"的原则:1)相称(不重、不漏)2)有标准

2.非负数:正实数与零的统称。笑冲(表为:x≥0)

性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法

②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。

4.相反数:①定义及表示法

②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义("三要素")

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数-自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号"││"是"非负数"的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

二、实数的运算

1.运算法则(加、减、乘、除、乘方、开方)

2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

分配律)

3.运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"

到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。

以上就是九年级上数学知识点的全部内容,②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

猜你喜欢