当前位置: 首页 > 所有学科 > 数学

初中数学笔记,初中数学教研笔记

  • 数学
  • 2023-07-29

初中数学笔记?初中生学习数学要注意重点知识点的整理,下面我为大家总结了初一数学学霸笔记重点内容,仅供大家参考。有理数法则 1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,那么,初中数学笔记?一起来了解一下吧。

初中数学手写笔记

上课认真听讲,课后多练习。

数学:

课本上讲的定理,你可以自己试着自己去推理。这样不但提高自己的证明能力,也加深对公式的理解。还有就是大量练习题目。基本上每课之后都要做课余练习的题目(不包括老师的作业)。

数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此.良好的数学学习习惯包括:听讲、阅读、探究、作业.

听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记.每堂课结束以后应深思一下进行归纳,做到一课一得.

阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,帆棚轿发展思维.

探究:要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律.

作业:要先复习后作业,先思考再动笔,和镇做会一类题领会一大片,作业要认真、书写要规范,态肆只有这样脚踏实地,一步一个脚印,才能学好数学.

总之,在学习数学的过程中,要认识到数学的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的数学学习习惯,进而培养思考问题、分析问题和解决问题的能力,最终把数学学好.

总之,是个积累的过程,你了解的越多,学习就越好,所以多记忆,选择自己的方法。

初中笔记整理大全

初中数学知识点总结

一、基本知识

一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

初中学霸笔记 电子版

数学专著初中读书笔记

当品读完一部作品后,想必你有不少可以分享的东西,何不静下心来写写读书笔记呢?那么你会写读书笔记吗?下面是我为大家收集的数学专著初中读书笔记,仅供参考,大家一起来看看吧。

数学专著初中读书笔记1

最近读《数学思维与小学数学》,感触颇深。书中讲到:只有通过深入的揭示隐藏在数学知识内容背后的思维方法,我们才能真正的做到将数学课“讲活”、“讲懂”、“ 讲深”。这就是指,教师应通过自己的教学活动向学生展现“活生生的”数学研究工作,而不是死的数学知识;教师并应帮助学生真正理解有关的教学内容,而不是囫囵吞枣,死记硬背;教师在教学中又不仅使学生掌握具体的数学知识,而且也应帮助学生深入领会并逐渐掌握内在的思维方法。

小学生学习数学,是在基本知识的掌握过程中,不断形成数学能力、数学素养,获取多角度思考和看待问题的方法,从而“数学的”思考和解决问题。基本知识的掌握是途径,多角度的思维方式的获取才是最终目的。法国教育家第斯多惠说:“一个不好的教师奉送真理,一个好的教师则教人发现真理。”学生学习数学是一种活动,一种经历,一个过程,活动和过程是不能告诉的,只能参与和体验。因此,教师要改变以书本知识、教学为中心,以教师传递、学生接受的学习方式,把学习的主动权教给学生使学生在操作体验中获得对知识的真实感受,这是学生形成正确认识,并转化为能力的原动力。

197页初中数学学霸手写笔记

有定理,和证明

数学定理

三角形三条边的关系

定理:三角形两边的和大于第三边

推论:三角形两边的差森派小于第三边

三角形内角和

三角形内角和定理 三角形三个内角的和等于180°

推论1 直角三角形的两个锐角互余

推论2 三角形的一个外角等于和它不相邻的两个内角和

推论3 三角形的一个外角大雨任何一个和它不相邻的内角

角的平分线

性质定理 在角的平分线上的点到这个角的两边的距离相等

几何语言:

∵OC是∠AOB的角平分线(或者∠AOC=∠BOC)

PE⊥OA,PF⊥OB

点P在OC上

∴PE=PF(角平分线性质定理)

判定定理 到一个角的两边的距离相等的点,在这个角的平分线上

几何语言:

∵PE⊥OA,PF⊥OB

PE=PF

∴点P在∠AOB的角平分线上(角平分线判定定理)

等腰三角形的性质

等腰三角形的性质定理 等腰三角形的两底角相等

几何语言:

∵AB=AC

∴∠B=∠C(等边对等角)

推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

几何语言:

(1)∵AB=AC,BD=DC

∴∠1=∠2,AD⊥BC(等腰三角形顶角的平分线垂直平分底边)

(2)∵AB=AC,∠1=∠2

∴AD⊥BC,BD=DC(等腰三角形顶角的平分线垂直平分底边)

(3)∵AB=AC,AD⊥BC

∴∠1=∠2,BD=DC(等腰三角形顶角的平分线垂直平分底边)

推论2 等边三角形的各角都相等,并且每一个角等于60°

几何语言:

∵AB=AC=BC

∴∠A=∠B=∠C=60°(等边三角形的各角都相等,并且每一个角都等于60°)

等腰三角形的判定

判定定理 如果此颤贺一个三角形有两个角相等,那么这两个角所对的边也相等

几何语言:

∵∠B=∠C

∴AB=AC(等角对等边)

推论1 三个角都相等的三角形是等边三角形

几何语言:

∵∠A=∠B=∠C

∴AB=AC=BC(三个角都相等的三角形是等边三角形)

推论2 有一个角等于60°的等腰三角形是等边三角形

几何语言:

∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)

∴AB=AC=BC(有一个角等于60°的等腰三角形是等边三角形)

推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

几何语言:

∵∠C=90°,∠B=30°

∴BC= AB或者AB=2BC(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)

线段的垂直平分线

定理 线段垂直平分线上的点和这条线段两个端点的距离相等

几何语言:

∵MN⊥AB于C,AB=BC,(MN垂直平分AB)

点P为MN上任一点

∴PA=PB(线段垂直平分线性质)

逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

几何语言:

∵PA=PB

∴点P在线段AB的垂直平分线上(线段垂直平分线判定)

轴对称和轴对称图形

定理1 关于某条之间对称的两个图形是全等形

定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上

逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称

勾股定理

勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即

a2 + b2 = c2

勾股定理的逆定理

勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形

四边形

定理 任意四边形的内角和等于360°

多边形内角和

定理 多洞芹边形内角和定理n边形的内角的和等于(n - 2)·180°

推论 任意多边形的外角和等于360°

平行四边形及其性质

性质定理1 平行四边形的对角相等

性质定理2 平行四边形的对边相等

推论 夹在两条平行线间的平行线段相等

性质定理3 平行四边形的对角线互相平分

几何语言:

∵四边形ABCD是平行四边形

∴AD‖BC,AB‖CD(平行四边形的对角相等)

∠A=∠C,∠B=∠D(平行四边形的对边相等)

AO=CO,BO=DO(平行四边形的对角线互相平分)

平行四边形的判定

判定定理1 两组对边分别平行的四边形是平行四边形

几何语言:

∵AD‖BC,AB‖CD

∴四边形ABCD是平行四边形

(两组对边分别平行的四边形是平行四边形)

判定定理2 两组对角分别相等的四边形是平行四边形

几何语言:

∵∠A=∠C,∠B=∠D

∴四边形ABCD是平行四边形

(两组对角分别相等的四边形是平行四边形)

判定定理3 两组对边分别相等的四边形是平行四边形

几何语言:

∵AD=BC,AB=CD

∴四边形ABCD是平行四边形

(两组对边分别相等的四边形是平行四边形)

判定定理4 对角线互相平分的四边形是平行四边形

几何语言:

∵AO=CO,BO=DO

∴四边形ABCD是平行四边形

(对角线互相平分的四边形是平行四边形)

判定定理5 一组对边平行且相等的四边形是平行四边形

几何语言:

∵AD‖BC,AD=BC

∴四边形ABCD是平行四边形

(一组对边平行且相等的四边形是平行四边形)

矩形

性质定理1 矩形的四个角都是直角

性质定理2 矩形的对角线相等

几何语言:

∵四边形ABCD是矩形

∴AC=BD(矩形的对角线相等)

∠A=∠B=∠C=∠D=90°(矩形的四个角都是直角)

推论 直角三角形斜边上的中线等于斜边的一半

几何语言:

∵△ABC为直角三角形,AO=OC

∴BO= AC(直角三角形斜边上的中线等于斜边的一半)

判定定理1 有三个角是直角的四边形是矩形

几何语言:

∵∠A=∠B=∠C=90°

∴四边形ABCD是矩形(有三个角是直角的四边形是矩形)

判定定理2 对角线相等的平行四边形是矩形

几何语言:

∵AC=BD

∴四边形ABCD是矩形(对角线相等的平行四边形是矩形)

菱形

性质定理1 菱形的四条边都相等

性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

几何语言:

∵四边形ABCD是菱形

∴AB=BC=CD=AD(菱形的四条边都相等)

AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC

(菱形的对角线互相垂直,并且每一条对角线平分一组对角)

判定定理1 四边都相等的四边形是菱形

几何语言:

∵AB=BC=CD=AD

∴四边形ABCD是菱形(四边都相等的四边形是菱形)

判定定理2 对角线互相垂直的平行四边形是菱形

几何语言:

∵AC⊥BD,AO=CO,BO=DO

∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形)

正方形

性质定理1 正方形的四个角都是直角,四条边都相等

性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

中心对称和中心对称图形

定理1 关于中心对称的两个图形是全等形

定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

梯形

等腰梯形性质定理 等腰梯形在同一底上的两个角相等

几何语言:

∵四边形ABCD是等腰梯形

∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的两个角相等)

等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

几何语言:

∵∠A=∠B,∠C=∠D

∴四边形ABCD是等腰梯形(在同一底上的两个角相等的梯形是等腰梯形)

三角形、梯形中位线

三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半

几何语言:

∵EF是三角形的中位线

∴EF= AB(三角形中位线定理)

梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半

几何语言:

∵EF是梯形的中位线

∴EF= (AB+CD)(梯形中位线定理)

比例线段

1、 比例的基本性质

如果a∶b=c∶d,那么ad=bc

2、 合比性质

3、 等比性质

平行线分线段成比例定理

平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

几何语言:

∵l‖p‖a

(三条平行线截两条直线,所得的对应线段成比例)

推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边

垂直于弦的直径

垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧

几何语言:

∵OC⊥AB,OC过圆心

(垂径定理)

推论1

(1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

几何语言:

∵OC⊥AB,AC=BC,AB不是直径

(平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)

(2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧

几何语言:

∵AC=BC,OC过圆心

(弦的垂直平分线过圆心,并且平分弦所对的两条弧)

(3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

几何语言:

(平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)

推论2 圆的两条平分弦所夹的弧相等

几何语言:∵AB‖CD

圆心角、弧、弦、弦心距之间的关系

定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等

推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等

圆周角

定理 一条弧所对的圆周角等于它所对的圆心角的一半

推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角

推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

圆的内接四边形

定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

几何语言:

∵四边形ABCD是⊙O的内接四边形

∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE

切线的判定和性质

切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

几何语言:∵l ⊥OA,点A在⊙O上

∴直线l是⊙O的切线(切线判定定理)

切线的性质定理 圆的切线垂直于经过切点半径

几何语言:∵OA是⊙O的半径,直线l切⊙O于点A

∴l ⊥OA(切线性质定理)

推论1 经过圆心且垂直于切线的直径必经过切点

推论2 经过切点且垂直于切线的直线必经过圆心

切线长定理

定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

几何语言:∵弦PB、PD切⊙O于A、C两点

∴PA=PC,∠APO=∠CPO(切线长定理)

弦切角

弦切角定理 弦切角等于它所夹的弧对的圆周角

几何语言:∵∠BCN所夹的是 ,∠A所对的是

∴∠BCN=∠A

推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , =

∴∠BCN=∠ACM

和圆有关的比例线段

相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等

几何语言:∵弦AB、CD交于点P

∴PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

几何语言:∵AB是直径,CD⊥AB于点P

∴PC2=PA·PB(相交弦定理推论)

切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项

几何语言:∵PT切⊙O于点T,PBA是⊙O的割线

∴PT2=PA·PB(切割线定理)

推论 从圆外一点因圆的两条割线,这一点到每条割线与圆的焦点的两条线段长的积相等

几何语言:∵PBA、PDC是⊙O的割线

∴PT2=PA·PB(切割线定理推论)

初中数学学霸笔记电子版

初中数学知识点总结

一、基本知识

一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个纤陵点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得键档正,异号得负,绝对值相乘。②任何数与0相乘得0。

以上就是初中数学笔记的全部内容,1、可以分类建立“错题集",整理每次练习和考试中出现的错误,并作剖析;2、还可以将笔记整理为“妙题巧解”、“方法点评”、“易错题”等类别。a.如果老师讲概念或公式时(主要指基础知识),主要记知识的发生背景、。

猜你喜欢