高一北师大版数学?高一频道为你整理了《北师大版高一数学上册知识点总结》,希望可以帮到你!【一】向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、那么,高一北师大版数学?一起来了解一下吧。
【 #高一#导语】正向思考的力量,胜过一个负面思想的力量数百倍,那会降低我们某种程度的忧虑。而忧愁像婴儿一样,会慢慢被养大的。记住:别带着忧愁入睡,想想明早天边的彩虹吧。高一频道为你整理了《北师大版高一数学上册知识点总结》,希望可以帮到你!
【一】
向量:既有大小,又有方向的量.
数量:只有大小,没有方向的量.
有向线段的三要孙租姿素:起点、方向、长度.
零向量:长度为的向型册量.
单位向量:长度等于个单位的向量.
相等向量:长度相等且方向相同的向量
&向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加则绝法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ
【 #高一#导语】我们学会忍受和承担。但我们心中永远有一个不灭的心愿。是雄鹰,要翱翔羽天际!是骏马,要驰骋于疆域!要堂堂正正屹立于天地!努力!坚持!拼搏!成功!一起来看看 无 高一频道为大家准备的《北师大版高一数学必修一必背知识点:集合的含义与表示》吧,希望对你的学习有所帮助!
1.集合的概念
一般地,把一些能够确定的不同的对象看成一个铅碧整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。
2.集合元素的特征
由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:
⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。
设集合给定,若有一具体对象,则要么是的元素,要么不是的元素,二者必居
其一,且只居其一。
⑵互异性特征:集合中的元素必须是互不相同的。设集合给定,的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。
3.集合与元素之间的关系
集合与元素之间只有“属于”或“不属于”。例如:是集合的元素,记作,读作“属于”;不是集合的元素,记作,读作“不属于”。
南昌高中数学课本版本是:北师大版。
九江高中数学课本版本是:北师大版,赣州高中数学课本版本是:北师大版。吉安高中数学课本版本是:北师大版,鹰潭高中数学课本版本是:北师大版。
上饶高中数学课本版本是:北师大版,萍乡高中数学课本版本是:北师大版。
景德镇高中数学课本版本:北师大版,新余高中数学课本版本是:北师大版。宜春高中数学课本版本是:北师大版,抚州高中数学课本版本是:北师大版。
集合是高一数学必修一中最基本的概念之一,那么集合这部分有哪些知识点需要掌握呢?下面是我给大家带来的高一数学必修一集合知识点,希望对你有帮助。
北师大版高一数学必修一集合知识点
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母 集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作―A并B‖(或―B并A‖),即A∪B={x|x∈A,或x∈B} 交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作―A交B‖(或―B交A‖),即A∩B={x|x∈A,且x∈B}
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)
注:空集包含于任何集合,但不能说―空集属于任何集合
注:空集属于任何集合,但它不属于任何元素.
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
集合的性质:
确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如―个子高的同学‖―很小的数‖都不能构成集合。
1.“包含”关系子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA
2.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集
3.“相拿孙等消拆链”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-11}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
集合是学习函数的基础知识,在段考和高考中是御辩必考内容。在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。
以上就是高一北师大版数学的全部内容,1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA 2.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集。