目录贵州专升本数学考纲 专生本数学考试范围 专插本高数考试范围 专升本高数1考试范围 自考专升本数学考什么
重庆专升本数学考试范围如下:
一、一元函数微分学。
1、理解函数概念,知道函数的表示法;会求函数的定义域及函数值。
2、掌握函数的奇偶性、单调性、周期性、有界性。
3、理解复合函数与反函数的定义,会求单调函数的反函数。
4、掌握基本初等函数的性质与图像,了解初等函数的概念。
5、理解极限概念及性质,掌握极限的运算法则。
6、理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。
7、了解夹逼准则与单调有界准则,掌握两个重要极限:
8、理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。
9、理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。
10、理解导数的定义及几何意义,会根据定义求函数的导数。
11、理解函数的可导与连续的关系。
12、熟练掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则、隐函数求导法、对数求导法及参数方程求导法,了解反函数的求导法则。
13、了解高阶导数的概念,熟练掌握初等函数的一阶和高阶导数的求法。
14、理解微分的定义、可微与可导的关系,了解微分的四则运算法则及一阶微分形式的不变性;会求函数的微分。
15、理解罗尔(Rolle)定理、拉格朗日中值(Lagrange)定理,了解柯西(Cauchy)中值定理和泰勒(Taylor)中值定理。会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明一些简单不等式。
16、熟练掌握用洛必达(L’Hospital)法则求未定式的极限。
17、理解函数极值的概念、极值存在的必要条件及充分条件。
18、会求函数的单调区间和极值,会求函数的最大值与最小值,会解决一些简单的应用问题,会证明一些简单的不等式。
19、了解函数的凹凸性及曲线拐点的定义,会求函数的凹凸区间及曲线的拐点。
20、会求曲线的渐近线,会描绘一些简单函数的图形。
二、一元函数积分学。
1、理解原函数和不定积分的概念及性质。
2、熟练掌握不定积分的基本公蚂简式。
3、熟练掌握不定积分的换元积分法和分部积分法。
4、理解变上限积分函数的定义,掌握求变上限积分函数导数的方法。
5、理解定积分的概念和几何意义,掌握定积分的基本性质。
6、熟练掌握牛顿-莱布尼兹(Newton-Leibniz)公式,掌握定积分的换元法和分部积分法。
7、掌握定积分的微元法,会求平面图形的面积及平面图形绕坐标轴旋转的旋转体的体积。
8、理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。
三、向量代数与空间解析几何。
1、理解空间直角坐标系及向量的概念,掌握向量的坐标表示法,会求向量的模、方向余弦。
2、掌握向量的线性运算、向量的数量积、向量积的计算方法,理解其几何意义。
3、熟练掌握二向量平行、垂直的条件。
4、会求平面的点法式方程、一般式方程、截距式方程。会判定两个平面位置关系。
5、了解直线的一般式方程,会求直线的对称式(点向式)方程、参数式方程。会判定两条直线的位置关系。
6、会判定直线与平面的位置关系。
四、多元坦郑函数微积分学。
1、理解二元函数的概念,会求一些简单二元函数的定义域。
2、了解二元函数的极限、连续的定义及其基本性质。
3、熟练掌握显函数的一阶、高阶偏导数的求法。
4、会求二元函数的极值,会用拉格朗日乘数法求条件极值。
5、熟练掌握二元函数全微分的求法。
6、熟练掌握二重积分的计算方法。
五、微分方程。
1、理解微分方程的定义及阶、解、通解、特解等概念。
2、熟练掌握可分离变量的微分方程、齐次微分方程及一阶线性微分方程的解法。
3、理解二阶常系数齐次线性微分方程解的性质及通解的结构。
4、熟练掌握二阶常系数齐次线性微分方程的解法。
六、无穷级数
1、理解无穷级数收敛、发散的概念。闷信裤
2、理解级数收敛的必要条件和级数的主要性质。
3、知道几何级数的敛散性。
4、熟练掌握正项级数的比值判别法,比较判别法。
5、理解幂级数的收敛半径、收敛区间及收敛域的定义。
6、熟练掌握求幂级数的收敛半径、收敛区间及收敛域的方法。
七、线性代数。
1、理解行列式的概念,掌握行列式的性质。
2、掌握行列式的计算。
3、会用克莱姆(Cramer)法则。
4、熟练掌握矩阵的线性运算及运算法则、矩阵的乘法及运算法则。
5、理解方阵可逆的概念和判定法则,掌握求可逆矩阵的逆矩阵的方法。
6、理解矩阵的秩的概念,掌握求矩阵秩的方法。
7、会解简单的矩阵方程。
8、熟练掌握矩阵的初等变换。
9、掌握齐次线性方程组有非零解的判定条件及解的结构,掌握非齐次线性方程组解的判定和结构。
10、熟练掌握线性方程组的解法。
八、概率论初步。
1、理解随机事件的概念,掌握事件之间的关系和运算。
2、了解概率的统计定义,掌握概率的基本性质和概率的加法公式。
3、掌握古典概率的计算公式,会求一些事件发生的概率。
4、理解事件独立性的概念,能用事件的独立性计算概率。
5、理解随机变量的概念,会求一些简单随机变量的分布。
6、理解随机变量的数学期望及方差的概念,掌握数学期望和方差的基本性质,会求一些简单随机变量的数学期望和方差。
*注:本大纲对理论、概念等从高到低的要求是:理解,知道,了解;对方法、计算等从高到低的要求是:熟练掌握,掌握,会。
专升本数学考核范围是什么?有哪些题型?整理了一系列相关内容,希望对您有所参考和帮助。
考核范围是函数、极限和连续、一元函数微分学、一元函数积分学和多元函数微积分初步等四个部分。
专升本数学考试试卷中包括选择题(单项选择题),约占15%;填空题,穗指约占25%;解答题,约占60%。试卷中,选择题每小题4分,共5个小题,计20分,约占13.3%;填空题每小题4分,共10个小题,计40分,约占26.7%;解答题的前10个小题,每小题6分猜亏配,后3个小题每小题10分,共计90分,约占空禅60%。
专升本数学学士方法和技巧
养成认真谨慎的习惯:
首先是在审题时要认真,千万不能看错题目要求,其次是在草纸上演算时要认真写整齐,以便减少错误率,也利于检查。无论是做大题还是小题,都不能掉以轻心。
善于总结和归纳:
在做完题之后,要总结一下自己出错的的原因,有哪些新的方法和思路,把它们都整理到笔记本上,以便后期再进行回顾,此外,做题后一定要多思考,想想解题思路的可取之处,积累起来,以后碰到类似的题目就会联系起来,能够让我们快速找到解题的方法。
自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询,免费领取复习资料:https://www.87dh.com/xl/
河北专升本数学考试范围是高中数学、数学分析、线性代数、概率论与数理统计。
1、高中数学:涉及初中数学和高中数扰裂学的基础知识,包括函数、三角函数、平面向量、立体几何、数列、极限等内容。
2、数学分析:主要是微积分和数学分析基础知识,包括单元函数、多元函数、微分方程、级数等。
3、线性代数:涉及向量空间、矩阵理裂李圆论、线性方程组、特征值与肆塌特征向量等内容。
4、概率论与数理统计:主要包括概率分布、随机变量、统计量、假设检验等内容。
专升本数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不定积分概念、不定积分换元法、不定积分分部积分法;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
具体而言:
高数一包括:高等数学、线性代数和概率统计;高等数学占60%,线性代数20%,概率论20%。
高数二包括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
专升本的考试科目:
1、文史类:政治、英语、大学圆尺宏语文。
2、艺术类:政治、英语、艺术概论。
3、理工类:政治、英语、高等数学(一)。
4、经济管理类:政治、英语、高等数学(二)。
5、法学类:政治、英语、民法。
6、教育学类:政治、英语、教育理论。
7、农学类橘册:困棚政治、英语、生态学基础。
8、医学类:政治、英语、医学综合。
专升本数学考试范围是:函数、极限与连续;导数与察磨微分;中值定理与导数应用;原函数与不定积分概念、不定积分换元法、不定积分分部积分法;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
高数一包括:高等数学、线性代数和概率统计;高等数学占60%,线性代数20%,概率论20%。
高数二包配没御括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
专升本高数在出题上区别于普通高校的期末考试题及其他测试,也就是说每道题都只考单独的一个知识点,不具有综合性,题量大,但题目简单,只要你学会了一个知识点,就能保证会做一道题。
专升本数学所有考点分为8大模块:
第一模块:函数、极限和连续。包括四个内容:(1)高数主要研究对象--函数 (2)研究--极限 (3)无穷小量、无穷大量 (4)函数的连续性。
第二模块:一元函数的微分学。重要内容:(1)导数与微分 (2)微分中值定理与洛必达法则 (3)一元函数求导 (4)函数的单调性与极值。
第三模块:积分分为:定积分与不定积分。解不定积分或者定积分的方法:(1)直接法 (2)分布积分法 (3)换元法。
第四模块:常微分方程 分为:一阶微分方程、高阶微分方程和二阶线性微分方程;一阶微分方程考的比较多。
第五模块:向量代数、空间解析几何。过渡章节,为后面学习二元函数的微积分打基础。
第六模块:多元函数的微分学。多元微分(多元函数求偏导)和(复合函数和隐函数的微分法)、(多元函数的极值应用)。
第七模块:多元函数积分学重点掌握二重积分和曲线积分。
第八模块:无培岩穷极数 工程中的近似计算会用到。包括:竖向极数和幂级数。