高三数学真题?一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1. 设集合 A={x|1 A (1,4) B (3,4) C (1,3) D (1,2) (3,4)2. 已知i是虚数单位,那么,高三数学真题?一起来了解一下吧。
2022年高考数学依据数学课程标准命题,深化基础考查,突出主干知识,创新试题设计。下面是我为大家收集的关于2022年高考数学卷真题及答案解析(全国新高考1卷)。希望可以帮助大家。
高考数学卷真题
高考数学卷真题答案解析
高考数学知识点整理
一、直线方程.
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定消正值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
‖两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
(一般的结论是:对于两条直线,它们在轴上的纵截距是,则‖,且或的斜率均不存在,即是平行的必要不充分条件,且)
推论:如果两条直线的倾斜角为则‖.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别拿春悔为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)
4. 直线的交角:
⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为参数,不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点,直线到的距离为,则有.
注:
1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.
特例:点P(x,y)到原点O的距离:
2. 定比分点坐标分式。
一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合 A={x|1
A (1,4) B (3,4) C (1,3) D (1,2) (3,4)
2. 已知i是虚数单位,则 =
A 1-2i B 2-i C 2+i D 1+2i
3. 设aR ,则a=1是直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行 的
A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件
4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向凳庆左平移1个单位长度,再向下平移 1个单位长度,得到的图像是
5.设a,b是两个非零向量。
A.若|a+b|=|a|-|b|,则ab
B.若ab,则|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,则存在实数,使得b=a
D.若存在实数,使得b=a,则|a+b|=|a|-|b|
6.若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有
A.60种 B.63种 C.6 5种 D.66种
7.设S。是公差为d(d0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是
A.若d0,则列数﹛Sn﹜ 有最大项
B.若数列﹛Sn﹜有最大项,则d0
C.若数列﹛Sn﹜
D.是递增数列,则对任意nNn,均有Sn0
8.如图,F1,F2分别是双曲线C: (a,b0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别教育P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是
A. B C.. D.
9.设a大于0,b大于0.
A.若2a+2a=2b+3b,则a B.若2a+2a=2b+3b,则ab
C.若2a-2a=2b-3b,则a D.若2a-2a=ab-3b,则a
10. 已知矩形ABCD,AB=1,BC= 。
一.选择题:
1.设是复数,表示满足的最小正整数,则对虚数单位()
A.8B.6C.4D.2
2.已知,若,则的取值范围是()
悉宏A.B.C.D.
3.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是()
4.设均为正数,且则()
A.B.C.D.
5.已知数列为等比数列,且则=()
....
6.由直线x=1,x=2,曲线及x轴所围图形的面积为()
A.B.C.ln2D.
渣隐7.已知,则的如陆厅取值范围是()
A.B.C.D.
8.已知等差数列中,记,S13=()
A.78B.68C.56D.52
9.如果是二次函数,且的图象开口向上,顶点坐标为(1),那么曲线上任一点的切线的倾斜角的取值范围是()
A.B.C.D.
10.设0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是()
A.B.C.D.3
11.在△ABC中,若,则△ABC是()
A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形
12.已知定义在R上的'函数对任意的都满足,当时,若函数至少6个零点,则取值范围是()
A.B.C.D.
二.填空题:
13.若,则的值为__________________.
14.在△ABC中,B=300,AC=1,则BC的长度为__________________.
15.类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:若三棱锥ABCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为____________.
16.已知m、n是两条不同的直线,、是两个不同的平面,给出下列命题:
①若,m∥,则m;②若m,n,且mn,则;
③若m,m∥,则;④若m∥,n∥,且m∥n,则∥.
其中真命题的序号是___________________.
填空题 1.2010上海文7.圆2 2: 2 4 4 0C x y x y 的圆心到直线3 4 4 0x y 的距离d 。 【答案】3 解析考查点到直线距离公式 圆心1,2到直线3 4 4 0x y 距离为3542413 2.2010湖南文14.若不同两点P,Q的坐标分别为ab3-b3-a则线段PQ的垂直平分线l的斜率为 ,圆x-22+y-32=1关于直线对称的圆的方蔽槐咐程为 【答案】-1 3.2010全国卷2理16已知球O的半径为4圆M与圆N为该球的两个小圆AB为圆M与圆N的公共弦4AB若3OM ON 则两圆圆心的距离MN 【答案】3 【命题意图】本试题主要考查球的截面圆的性质解三角形问题. 【解析】设E为明神AB的中点则OEMN四点共面如图∵4AB所以22ABOE R 2 32 ∴ME= 3由球的截面性质有OM ME,ON NE ∵3OM ON 所以MEO与NEO全等所以MN被OE垂直平分在直角三角形中由面积相等可得M E M OM N=2 3OE 4.2010全国卷2文16已知球O的半径为4圆M与圆N为该球的两个小圆AB为圆M与圆N的公共弦4AB若3OM ON 则两圆圆心的距离MN 。
高中前高衫念宏数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料慧腔,包括:试题试卷、课件、教材、、各大名师网校合集。
以上就是高三数学真题的全部内容,一.选择题:1.设是复数,表示满足的最小正整数,则对虚数单位()A.8B.6C.4D.2 2.已知,若,则的取值范围是()A.B.C.D.3.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为。