当前位置: 首页 > 所有学科 > 数学

高一期末试卷数学,高一数学下学期期末考试卷及答案

  • 数学
  • 2023-08-12

高一期末试卷数学?高一数学期末考试试卷分析(一) 第一学期期末考试高一地理试卷的命题范围主要考查了人教版必修1的相关知识,试卷从面向学生的测试角度命题,覆盖的知识面较为合理,重视基础知识的考查,总体难度不大,但是比较灵活多变,区分度较好。那么,高一期末试卷数学?一起来了解一下吧。

高一上学期数学内容有哪些

【 #高一#导语】不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。高一频道为正在拼搏的你整理了《高一年级上学期数学期末考试试题》,希望对你有帮助!

【一】

第Ⅰ卷

一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设集合,则

(A)(B)(C)(D)

2.在空间内,可以确定一个平面的条件是

(A)三条直线,它们两两相交,但不交于同一点

(B)三条直线,其中的一条与另外两条直线分别相交

(C)三个点(D)启此胡两两相交的三条直线

3.已知集合{正方体},{长方体},{正四棱柱},{直平行六面体},则

(A)(B)

(C)(D)它们之间不都存在包含关系

4.已知直线经过点,,则该直线的倾斜角为

(A)(B)(C)(D)

5.函数的定义域为

(A)(B)(C)(D)

6.已知三点在同一直线上,则实数的值是

(A)(B)(C)(D)不确定

7.已知,且,则等于

(A)(B)(C)(D)

8.直线通过第二、三、四象限,则系数需满足条件

(A)(B)(C)同号(D)

9.函数与的图象如下左图,则函数的图象可能是

(A)经过定点的直线都可以用方程表示

(B)经过任意两个不同的点的直线都可以用方程

表示

(C)不经过原点的直线都可以用方程表示

(D)经过点的直线都可以用方程表示

11.已知正三棱锥中,,且两两垂直,则该三棱锥外接球的表面积为

(A)(B)

(C)(D)

12.如图,三棱柱中,是棱的中点,平面分此棱柱为上下两部分,则这上下两部分体积的比为

(A)(B)

(C)(D)

第Ⅱ卷

二.填空题:本大题共4小题,每小题5分,共20分.

13.比较大小:(在空格处填上“”或“”号).

14.设、是两条不同的直线,、是两个不同的平面.给出下列四个命题:

①若,,则;②若,,则;

③若//,//,则//;④若,则.

则正确的命题为.(填写命题的序号)

15.无论实数()取何值,直线恒过定点.

16.如图,网格纸上小正方形的边长为,用粗线画出了某多面体的三视图,则该多面体最长的棱长为.

三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.

17.(本小题满分10分)

求函数,的值和最小值.

18.(本小题满分12分)

若非空集合,集合,且,求实数.的取值.

悄拦19.(本小题满分12分)

如图,中,分别为的中点,

用坐标法证明:

20.(本小题满分12分)

如图所示,已知空间四边形,分别是边的中点,分别是边上的点,且,

求证:

(Ⅰ)四边形为梯形;

(Ⅱ扒罩)直线交于一点.

21.(本小题满分12分)

如图,在四面体中,,⊥,且分别是的中点,

求证:

(Ⅰ)直线∥面;

(Ⅱ)面⊥面.

22.(本小题满分12分)

如图,直三棱柱中,,分别是,的中点.

(Ⅰ)证明:平面;

(Ⅱ)设,,求三棱锥的体积.

【答案】

一.选择题

DACBDBACABCB

二.填空题

13.14.②④15.16.

三.解答题

17.

解:设,因为,所以

则,当时,取最小值,当时,取值.

18.

解:

(1)当时,有,即;

(2)当时,有,即;

(3)当时,有,即.

19.

解:以为原点,为轴建立平面直角坐标系如图所示:

设,则,于是

所以

(Ⅱ)由(Ⅰ)可得相交于一点,因为面,面,

面面,所以,所以直线交于一点.

21.证明:(Ⅰ)分别是的中点,所以,又面,面,所以直线∥面;

(Ⅱ)⊥,所以⊥,又,所以⊥,且,所以⊥面,又面,所以面⊥面.

22.证明:(Ⅰ)连接交于,可得,又面,面,所以平面;

【二】

一、选择题:(本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.)

1.若直线x=1的倾斜角为α,则α=()

A.0°B.45°C.90°D.不存在

2.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为

A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台

C.三棱柱、四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台

3.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为,则a等于()

A.-1B.-2C.-3D.0

4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()

A.B.

C.D.

5.若直线与圆有公共点,则()

A.B.C.D.

6.若直线l1:ax+(1-a)y=3,与l2:(a-1)x+(2a+3)y=2互相垂直,则a的值为()

A.-3B.1C.0或-D.1或-3

7.已知满足,则直线*定点()

A.B.C.D.

8.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()

A.32B.24C.20D.16

9.过点且在两坐标轴上截距的绝对值相等的直线有()

A.1条B.2条C.3条D.4条

10.直角梯形的一个内角为45°,下底长为上底长的,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+),则旋转体的体积为()

A.2B.C.D.

11.将一张画有直角坐标系的图纸折叠一次,使得点与点B(4,0)重合.若此时点与点重合,则的值为()

A.B.C.D.

12.如图,动点在正方体的对角线上,过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()

选择题答题卡

题号123456789101112

答案

二、填空题:(本大题共4小题,每小题4分,共16分。

人教版高一数学试卷

【 #高一#导语】在高一的数学期末考试结束之后,做好每一个试卷的分析,会让你受益匪浅。下面是整理的高一数学期末考试试卷分析以供大家学习参考。

高一数学期末考试试卷分析(一)

第一学期期末考试高一地理试卷的命题范围主要考查了人教版必修1的相关知识,试卷从面向学生的测试角度命题,覆盖的知识面较为合理,重视基础知识的考查,总体难度不大,但是比较灵活多变,区分度较好。充满新课程的气息。减少对死记硬背知识的考查比例、突出能力学习要求;培养学生的观察理解能力,应为一份令人较为满意的试题。

一、试卷特点分析

本次地理试题总分为100分,其中选择题共25小题,每小题2分,共50分,非选择题为25、26、27、28四大题共50分。

1.注重基础

试题的考点覆盖了半期所学的重要知识点,对重点章节有所倾斜,重要图表都有所涉猎。重点强调基础,考查基本能力,会运用所学知识简单分析问题。目的是引导学生掌握必须的地理知识,重视分析问题能力的培养。

2.结合实际,培养学生的创新意识

创新精神和实践能力是当前教育教学实践探究的热点和焦点问题。在整套试卷中,不少题目体现了课改的意识,考查了学生运用自己所学的地理知识简单分析解决生迹激闷产、生活中的实际问题,有利于对学生进行创新精神和实践能力的培养。

高一数学下学期期末考试卷及答案

心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。

一.选择题

1.若函数f(x)是奇函数纤肢,且有三个零点x1、x2、x3,则x1+x2+x3的值为()

A.-1 B.0

C.3 D.不确定

[答案]B

[解析]因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.

∴x1+x2+x3=0.

2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内()

A.至少有一实数根 B.至多有一实数根

C.没有实数根 D.有惟一实数根

[答案]D

[解析]∵f(x)为单调减函数,

x∈[a,b]且f(a)?f(b)<0,

∴f(x)在[a,b]内有惟一实根x=0.

3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)()

A.在区间1e,1,(1,e)内均有零点

B.在区间1e,1,(1,e)内均无零点

C.在区间1e,1内有零点;在区间(1,e)内无零点

D.在区间1e,1内无零点,在区间(1,e)内有零点

[答案]D

[解析]∵f(x)=13x-lnx(x>0),

∴f(e)=13e-1<0,

f(1)=13>0,f(1e)=13e+1>0,

∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.

4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是()

A.(-2,-1) B.(-1,0)

C.(0,1) D.(1,2)

[答案]C

[解析]∵f(0)=-1<0,f(1)=e-1>0,

即f(0)f(1)<0,

∴由零点定理知,该函数零点在区间(0,1)内.

5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是()

A.m≤1 B.0C.m>1 D.0[答案]B

[解析]设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有()

A.0个 B.1个

C.2个 D.3个

[答案]A

[解析]令f(x)=0得,(x-1)ln(x-2)x-3=0,

∴x-1=0或ln(x-2)=0,∴x=1或x=3,

∵x=1时,ln(x-2)无意义,

x=3时,分母为零,

∴1和3都不是f(x)的零点,∴f(x)无零点,故选A.

7.函数y=3x-1x2的一个零点是()

A.-1 B.1

C.(-1,0) D.(1,0)

[答案]B

[点评]要准确掌握概念,“零点”是一个数,不是一个点.

8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为()

A.至多有一个 B.有一个或两个

C.有且仅有一个 D.一个也没有

[答案]C

[解析]若a=0,则b≠0,此时f(x)=bx+c为单调函数,

∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点;

若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0,

∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.

9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间空竖漏为()

A.0,14 B.14,12

C.12,1 D.(1,2)

[答案]斗烂B

[解析]∵f14=214-log1214=42-2<0,f12=2-1>0,f(x)在x>0时连续,∴选B.

10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

x -1 0 1 2 3

ex 0.37 1 2.72 7.39 20.09

A.(-1,0) B.(0,1)

C.(1,2) D.(2,3)

[答案]C

[解析]令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C.

二、填空题

11.方程2x=x3精确到0.1的一个近似解是________.

[答案]1.4

12.方程ex-x-2=0在实数范围内的解有________个.

[答案]2

三、解答题

13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01).

[解析]令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-12<0,f(0)=1>0,

说明方程f(x)=0在区间(-1,0)内有一个零点.

取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5).

再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75).

同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625).

由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77.

14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2.

[解析]令f(x)=(x-2)(x-5)-1

∵f(2)=f(5)=-1<0,且f(0)=9>0.

f(6)=3>0.

∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2.

15.求函数y=x3-2x2-x+2的零点,并画出它的简图.

[解析]因为x3-2x2-x+2=x2(x-2)-(x-2)

=(x-2)(x2-1)=(x-2)(x-1)(x+1),

所以函数的零点为-1,1,2.

3个零点把x轴分成4个区间:

(-∞,-1],[-1,1],[1,2],[2,+∞].

在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表:

x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …

y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 …

在直角坐标系内描点连线,这个函数的图象如图所示.

16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1)

[解析]原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0.

取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下

端点或中点横坐标 端点或中点的函数值 定区间

a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0]

x0=-1+02=-0.5

f(x0)=3.375>0 [-1,-0.5]

x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75]

x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875]

x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875]

∵|-0.875-(-0.9375)|=0.0625<0.1,

∴原方程在(-1,0)内精确到0.1的近似解为-0.9.

17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围.

[解析]∵f(x)=log3(ax2-x+a)有零点,

∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解.

当a=0时,x=-1.

当a≠0时,若ax2-x+a-1=0有解,

则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0,

解得1-22≤a≤1+22且a≠0.

综上所述,1-22≤a≤1+22.

18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).

[解析]设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.

取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5).

再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375).

同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375).

由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3.

高一数学下册期末试卷及答案相关文章:

★高一数学下册期末试卷及答案

★高一数学下学期期末试卷及参考答案

★高一年级数学试卷下册期末

★高一数学期末考试知识点总结

★2020高一期末数学复习计划汇总精选

★高一数学考试反思5篇

★高一期末考试数学备考方法

★高一期末数学复习计划5篇

★2020初一暑假作业参考答案历史(人教版)

★高一数学学习方法和技巧大全

高一数学卷子期末测试题

【一】

一、选择题(每小题5分,共60分)

1.已知a=2,集合A={x|x≤2},则下列表示正确的是().

A.a∈AB.a/∈AC.{a}∈AD.a⊆A

2.集合S={a,b},含有元素a的S的子集共有().

A.1个B.2个C.3个D.4个

3.已知集合M={x|x<3},N={x|log2x>1},则M∩N=().

A.B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}

4.函数y=4-x的定义域是().

A.[4,+∞)B.(4,+∞)C.-∞,4]D.(-∞,4)

5.国内快递1000g以内的包裹的邮资标准如下表:

运送距离x(km)0<x≤500500<x≤10001000<x≤15001500<x≤2000…

邮资y(元)5.006.007.008.00…

如果某人在南京要快递800g的包裹到距南京1200km的某地,那么他应付的邮资是().

A.5.00元B.6.00元C.7.00元D.8.00元

告笑陵6.幂函数y=x(是常数)的图象().

A.一定经过点(0,0)B.一定经过点(1,-1)C.一定经过点(-1,D.一定经过点(1,1)

7.0.44,1与40.4的大小关系是().

A.0.44<40.4<1B.0.44<1<40.4C.1<0.44<40.4D.l<40.4<0.44

8.在同一坐标系中,函数y=2-x与y=log2x的图象是().

A.B.C.D.

9.方程x3=x+1的根所在的区间是().

A.(0,1)B.(1,2)C.(2,3)D.(3,4)

10.下列函数中,在区间(0,+∞)上是减函数的是().

A.y=-1xB.y=xC.y=x2D.y=1-x

11.若函数f(x)=13-x-1+a是奇函数,则实数a的值为().

A.12B.-12C.2D.-2

12.设集合A={0,1},B={2,3},定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},则集合A⊙B中的所有元素之和为().

A.0B.6C.12D.18

二、填空题(每小题5分,共30分)

13.集合S={1,2,3},集合T={2,3,4,5},则S∩T=.

升绝14.已知集合U={x|-3≤x≤3},M={x|-1<x<1},UM=.

15.如果f(x)=x2+1(x≤0),-2x(x>0),那么f(f(1))=.

16.若函数f(x)=ax3+bx+7,且f(5)=3,则f(-5)=__________.

17.已知2x+2-x=5,则4x+4-x的值是.

18.在下列从A到B的对应:(1)A=R,B=R,对应法则f:x→y=x2;(2)A=R,B=R,对应法则f:x→y=1x-3;(3)A=(0,+∞),B={y|y≠0},对应法则f:x→y=±x;(4)A=N*,B={-1,1},对应法则f:x→y=(-袜戚1)x其中是函数的有.(只填写序号)

三、解答题(共70分)

19.(本题满分10分)计算:2log32-log3329+log38-.

20.(本题满分10分)已知U=R,A={x|-1≤x≤3},B={x|x-a>0}.

(1)若AB,求实数a的取值范围;

(2)若A∩B≠,求实数a的取值范围.

21.(本题满分12分)已知二次函数的图象如图所示.

(1)写出该函数的零点;

(2)写出该函数的解析式.

22.(本题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).

(1)求函数h(x)的定义域;

(2)判断函数h(x)的奇偶性,并说明理由.

23.(本题满分12分)销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=35t,Q=15t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).

求:(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;

(2)总利润y的值.

24.(本题满分14分)已知函数f(x)=1x2.

(1)判断f(x)在区间(0,+∞)的单调性,并用定义证明;

(2)写出函数f(x)=1x2的单调区间.

试卷答案

一、选择题(每小题5分,共60分)

1.A2.B3.D4.C5.C6.D7.B8.A9.B10.D11.A12.D[

二、填空题(每小题5分,共30分)

13.{2,3}14.[-3,-1]∪[1,3]15.516.1117.2318.(1)(4)

三、解答题(共70分)

19.解原式=log34-log3329+log38-3=log3(4×932×8)-3=log39-3=2-3=-1.

20.解(1)B={x|x-a>0}={x|x>a}.由AB,得a<-1,即a的取值范围是{a|a<-1};(2)由A∩B≠,则a<3,即a的取值范围是{a|a<3}.

21.(1)函数的零点是-1,3;

(2)函数的解析式是y=x2-2x-3.

22.解(1)由2+x>0,2-x>0,得-2<x<2.所以函数h(x)的定义域是{x|-2<x<2}.

(2)∵h(-x)=lg(2-x)+lg(2+x)=h(x),∴h(x)是偶函数.

23.解(1)根据题意,得y=35x+15(3-x),x∈[0,3].

(2)y=-15(x-32)2+2120.

∵32∈[0,3],∴当x=32时,即x=94时,y值=2120.

答:总利润的值是2120万元.

24.解(1)f(x)在区间(0,+∞)为单调减函数.证明如下:

设0<x1<x2,f(x1)-f(x2)=1x12-1x22=x22-x12x12x22=(x2-x1)(x2+x1)x12x22.

因为0<x1<x2,所以(x1x2)2>0,x2-x1>0,x2+x1>0,即(x2-x1)(x2+x1)x12x22>0.

所以f(x1)-f(x2)>0,即所以f(x1)>f(x2),f(x)在区间(0,+∞)为单调减函数.

(2)f(x)=1x2的单调减区间(0,+∞);f(x)=1x2的单调增区间(—∞,0).

【二】

第Ⅰ卷选择题和第Ⅱ卷非选择题直接写在答题纸上的指定位置,在试卷上作答无效。

高一期末真题精选答案数学

一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)

1.不等式 的解集为 ▲ .

2.直线 : 的倾斜角为 ▲ .

3.在相距 千米的 两点处测量目标 ,若 , ,则 两点备仿之间的距离是 ▲ 千米(结果保留根号).

4.圆 和圆 的位置关系是 ▲ .

5.等比数列 的公比为正数,已知 , ,则 ▲ .

6.已知圆 上两点 关于直线 对称,则圆 的半径为

▲ .

7.已知实数 满足条件 ,则 的值为 ▲ .

8.已知 , ,且 ,则 ▲ .

9.若数列 满足: , ( ),则 的通项公式为 ▲ .

10.已知函数 , ,则函数 的值域为

▲ .

11.已知函数 , ,若 且 ,则 的最小值为 ▲ .

12.等比数列 的公比 ,前 项的和为 .令 ,数列 的前 项和为 ,若 对 恒成立,则实数 的最小值为 ▲ .

13. 中,角A,B,C所对的边为 .若 ,则 的取值范围是

▲ .

14.实数 成等差数列,过点 作直线 的垂线,垂足为 .又已知点 ,则线段 长的取值范围是 ▲ .

二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)

15.(本题满分14分)

已知 的三个顶点的坐标为 .

(1)求边 上的高所在直线的方程;

(2)若直线 与 平行,且在 轴上的截距比在 轴上的截距大1,求直线 与两条坐标轴

围成的三角形的周长.

16.(本题满分14分)

在 中,角 所对的边分别为 ,且满足 .

(1)求角A的大小;

(2)若 , 的面积 ,求 的长.

17.(本题满分15分)

数列 的前 项和为 ,满足 .等比数列 满足: .

(1)求证:数列 为等差数列;

(2)若 ,求 .

18.(本题满分15分)

如图, 是长方形海域,其中 海里, 海里.现有一架飞机在该海域失事,两艘海事搜救船在 处同时出发,沿直线 、 向前联合搜索,且 (其中 、 分别在边 、 上),搜索区域为平面四边形 围成的海平面.设 ,搜索区域的面积为 .

(1)试建立 与 的关系式,并指出 的取值范围;

(2)求 的值,并指出此时 的值.19.(本题满分16分)

已知圆 和点 .

(1)过点M向圆O引切线,求切线的方程;

(2)求以点M为圆心,且被直线 截得的弦长为8的圆M的方程;

(3)设P为(2)中圆M上任意一点,过点P向圆O引切线,切点为Q,试探究:平面内是否存在一定点R,使得 为定值?若存在,请求出定点R的坐标,并指出相应的定值;若不存在,请说明理由.

20.(本题满分16分)

(1)公差大于0的等差数列 的前 项和为 , 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项, .

①求数列 的通项公式;

②令 ,若对一切 ,都有 ,求 的取值范围;

(2)是否存在各项都是正整数的无穷数列 ,使 对一切 都成立,若存在,请写出数列 的一个通项公式;若不存在,请说明理由.

扬州市2013—2014学年度第二学期期末调研测试试题

高 一 数 学 参 考 答 案 2014.6

1. 2. 3. 4.相交 5.1 6.3

7.11 8. 9. 10. 11.3 12. 13.

14.

15.解:(1) ,∴边 上的高所在直线的斜率为 …………3分

又∵直线过点 ∴直线的磨掘方程为: ,即 …7分

(2)设直线 的方程为: ,即 …10分

解得: ∴直线 的方程为: ……………12分

∴直线 过点 三角形斜边长为

∴直线 与坐标轴围成的直角三角仿游纤形的周长为 . …………14分

注:设直线斜截式求解也可.

16.解:(1)由正弦定理可得: ,

即 ;∵ ∴ 且不为0

∴ ∵ ∴ ……………7分

(2)∵ ∴ ……………9分

由余弦定理得: , ……………11分

又∵ , ∴ ,解得: ………………14分17.解:(1)由已知得: , ………………2分

且 时,

经检验 亦满足 ∴ ………………5分

∴ 为常数

∴ 为等差数列,且通项公式为 ………………7分

(2)设等比数列 的公比为 ,则 ,

∴ ,则 , ∴ ……………9分

① ②得:

…13分

………………15分

18.解:(1)在 中, ,

在 中, ,

∴ …5分

其中 ,解得:

(注:观察图形的极端位置,计算出 的范围也可得分.)

∴ , ………………8分

(2)∵ ,

……………13分

当且仅当 时取等号,亦即 时,

答:当 时, 有值 . ……………15分

19.解:(1)若过点M的直线斜率不存在,直线方程为: ,为圆O的切线; …………1分

当切线l的斜率存在时,设直线方程为: ,即 ,

∴圆心O到切线的距离为: ,解得:

∴直线方程为: .

综上,切线的方程为: 或 ……………4分

(2)点 到直线 的距离为: ,

又∵圆被直线 截得的弦长为8 ∴ ……………7分

∴圆M的方程为: ……………8分

(3)假设存在定点R,使得 为定值,设 , ,

∵点P在圆M上 ∴ ,则 ……………10分

∵PQ为圆O的切线∴ ∴ ,即

整理得: (*)

若使(*)对任意 恒成立,则 ……………13分

∴ ,代入得:

整理得: ,解得: 或 ∴ 或

∴存在定点R ,此时 为定值 或定点R ,此时 为定值 .

………………16分

20.解:(1)①设等差数列 的公差为 .

∵ ∴ ∴

∵ 的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项

∴ 即 ,∴

解得: 或

∵ ∴ ∴ , ………4分

②∵ ∴ ∴ ∴ ,整理得:

∵ ∴ ………7分

(2)假设存在各项都是正整数的无穷数列 ,使 对一切 都成立,则

∴ ,……, ,将 个不等式叠乘得:

∴ ( ) ………10分

若 ,则 ∴当 时, ,即

∵ ∴ ,令 ,所以

与 矛盾. ………13分

若 ,取 为 的整数部分,则当 时,

∴当 时, ,即

∵ ∴ ,令 ,所以

与 矛盾.

∴假设不成立,即不存在各项都是正整数的无穷数列 ,使 对一切 都成立. ………16分

以上就是高一期末试卷数学的全部内容,高2008第一学期期末数学模拟试卷(二)一、选择题(本大题共12小题,每小题5分,共60分)1、已知 *** ( )A、 B、 C、 D、2、函数 的图像大致是( )3、在等差数列 中,若它的前n项之和 有最大值。

猜你喜欢