六年级趣味数学?六年级趣味数学题目1 1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。那么,六年级趣味数学?一起来了解一下吧。
大家总觉得数学枯燥,但数学也可以很有趣,我在此整理了六年级趣味数学题目,希望大家在阅读过程中有所收获!
六年级趣味数学题目1
1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小镇清时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。
对于六年级的学生来说,知道一些趣味小故事能够更好的促进数学这么科目的学习。下面是我网络整理的六年级趣味数学故事以供大家学习。
六年级趣味数学故事:唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
镇或段 六年级趣味数学故事:聪明的小男孩从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。
一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。
28.最少拿几次?
晚饭后,爸爸、妈妈和小红三个人决定下一盘跳棋。打开装棋念蠢子的盒子前,爸爸忽然用大手捂着盒子对小红说:“小红,爸爸给你出一道跳棋子的题,看你会不会做?”小红毫不犹豫地仔吵陪说:“行,您出吧?”“好,你听着:这盒跳棋有红、绿、蓝色棋子各15 个,你闭着眼睛往外拿,每次只能拿1个棋子,问你至少拿几次才能保证拿出的棋子中有3 个是同一颜色的?”
听完题后,小红陷入了沉思。同学们,你们会做这道题吗?
分析与解 至少拿7 次,才能保证其中有3 个棋子同一颜色。
我们可以这样想:按最坏的情况,小红每次拿出的棋子颜色都不一样,但从第4 次开始,将有2 个棋子是同一颜色。到第6 次,三种颜色的棋子各有2 个。当第7 次取出棋子时,不管是什么颜色,先取出的6 个棋子中必有2 个与它同色,碰梁即出现3 个棋子同一颜色的现象。
同学们,你们能从这道题中发现这类问题的规律吗?如果要求有4 个棋子同一颜色,至少要拿几次?如果要求5 个棋子的颜色相同呢?
兴趣是最好的老师,六年级趣味数学题提高学生对数学的兴趣,我整理了小学六年级趣味数学练习题,希望对你有帮助!
小学六年级趣味数学题(上)
(1)在六(3)班联欢会的“猜迷”抢答比赛中,有10题抢答题,规定答对1题得5分,答错1题得–8分,不答者得0分,玲玲共得12分,她抢答对几道题?答错几道题?
(2)如果一个圆柱的侧面展开图是一个正方形,那么这个圆柱的高是圆柱底面半径的多少倍?
(3)一根长2米的钢筋,横截成两段后,表面积增加了6.28平方厘米。这根钢筋的体积是多少立方厘米?
(4)学校买来长135米的一捆塑料绳,先剪下27米做了15根跳绳。照这样计算,剩下的绳子可以做多少根跳绳?
(5)哥哥有100元钱,弟弟有80元,哥哥给弟弟多少元钱后兄弟两人的钱数比是7:11?
(6)把红白蓝三种颜色的小旗各10面混在一起。如果让你闭上眼睛拿,每次至少拿多少面小旗才能保证一定有两面小旗是同色的?
(7)某次会议共有129人参加,如果你与每此念陵人握一次手,那么你共握手( )次。
(8)把7只小猫分别关进3个笼子里,不管怎么放,总有一个笼子里至少有( )只猫。
(9)用“2”、“7”、“8”、“5”和3个“0”组成一个“0”也不读的最小七位数是( )。
1小蚂蚁在蚁洞里住久了,便想出去闯天下.于是,它告别了小伙伴,带着一些食物走向了它十分向往的大城市.
一天它来到了数字城.小蚂蚁刚踏进城门,就被两个圆头圆脑的家伙给拦住了,它定眼一看,这是两个“0”.两个零同时说:“什么人,想进数字城?先拿出智商凭证,没有,就先过了我们这一关.”小蚂蚁好奇了:这里干什么呀,进门先要做测试?好,就让我来试一试.零守卫摇身一变,成了个空空的“九宫格”.它叫来许多数字,对小蚂蚁说:“把1——9填进格子中,使横、竖每行每列的和都相等.”小蚂蚁一看,大笑:“这种东西能难得住我?”说完,随手大笔一挥,写出来:
4 9 2
3 5 7
8 1 6
守卫一下子就不见了,小蚂蚁的眼前展现出一条宽阔的大道.
小蚂蚁踏上了这条路,正当它高高兴兴的时候,肚子却饿的“咕咕”叫了.小蚂蚁打开包裹,呀,食物和钱都不见了,可能是路上被偷了,这可怎么办呢?突然他看见前面的烧饼店聚满了数字,原来是店主在搞活动.店主举着喇叭大喊:“谁能回答出这道题就奖三个烧饼.一个饼煎一面要三分钟,现在锅子能同时煎两个饼,问三个烧饼两面都要煎最快要几分钟?”客人们都说要12分钟.小蚂蚁陷入了沉思,这道题不可能这么简单,最少,最少,啊,有了!小蚂蚁对周围的数字们说:“可以这样做,把1号和2号饼先煎三分钟,这时候两个饼都熟了一面.然后把2号饼取出,放入3号饼,同时1号饼翻身再煎三分钟,这时的1号饼已经全部熟了,3号饼只熟了一面.最后再把2号和3号饼不熟的一面一起煎三分钟,就大功告成了.这种方法只要9分钟.”店主宣布小蚂蚁获胜,并且奖给它三个烧饼.
2两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行.在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去.它一到达另一辆自行车车把,就立即转向往回飞行.这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止.如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点.苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里.
许多人试图用复杂的方法求解这道题目.
3有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼.河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下.“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把歼塌他的草帽吹落到船旁的水中.但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行.直到他划行到船与草帽相距5英里的时候,他才发觉这一点.于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽.
在静水中,渔夫划行的速度总是每小时5英里.在他向上游或下游划行时,一直保持这个速度不变.当然,这并不是他相对于河岸的速度.例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅核改信是每小时2英里;当他向下改轮游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里.
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑.虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动.就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别.
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿.因此,相对于河水来说,他总共划行了10英里.渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里.于是,他在下午4时找回了他那顶落水的草帽.
以上就是六年级趣味数学的全部内容,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。