目录高一简单数学试卷及答案 高一数学试题及答案 高一上册数学题目及答案 高一数学0分试卷
心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
一.选择题
1.若函数f(x)是奇函数纤肢,且有三个零点x1、x2、x3,则x1+x2+x3的值为()
A.-1 B.0
C.3 D.不确定
[答案]B
[解析]因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.
∴x1+x2+x3=0.
2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内()
A.至少有一实数根 B.至多有一实数根
C.没有实数根 D.有惟一实数根
[答案]D
[解析]∵f(x)为单调减函数,
x∈[a,b]且f(a)?f(b)<0,
∴f(x)在[a,b]内有惟一实根x=0.
3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)()
A.在区间1e,1,(1,e)内均有零点
B.在区间1e,1,(1,e)内均无零点
C.在区间1e,1内有零点;在区间(1,e)内无零点
D.在区间1e,1内无零点,在区间(1,e)内有零点
[答案]D
[解析]∵f(x)=13x-lnx(x>0),
∴f(e)=13e-1<0,
f(1)=13>0,f(1e)=13e+1>0,
∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.
4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是()
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
[答案]C
[解析]∵f(0)=-1<0,f(1)=e-1>0,
即f(0)f(1)<0,
∴由零点定理知,该函数零点在区间(0,1)内.
5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是()
A.m≤1 B.0C.m>1 D.0[答案]B
[解析]设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有()
A.0个 B.1个
C.2个 D.3个
[答案]A
[解析]令f(x)=0得,(x-1)ln(x-2)x-3=0,
∴x-1=0或ln(x-2)=0,∴x=1或x=3,
∵x=1时,ln(x-2)无意义,
x=3时,分母为零,
∴1和3都不是f(x)的零点,∴f(x)无零点,故选A.
7.函数y=3x-1x2的一个零点是()
A.-1 B.1
C.(-1,0) D.(1,0)
[答案]B
[点评]要准确掌握概念,“零点”是一个数,不是一个点.
8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为()
A.至多有一个 B.有一个或两个
C.有且仅有一个 D.一个也没有
[答案]C
[解析]若a=0,则b≠0,此时f(x)=bx+c为单调函数,
∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点;
若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0,
∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.
9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间空竖漏为()
A.0,14 B.14,12
C.12,1 D.(1,2)
[答案]斗烂B
[解析]∵f14=214-log1214=42-2<0,f12=2-1>0,f(x)在x>0时连续,∴选B.
10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1)
C.(1,2) D.(2,3)
[答案]C
[解析]令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C.
二、填空题
11.方程2x=x3精确到0.1的一个近似解是________.
[答案]1.4
12.方程ex-x-2=0在实数范围内的解有________个.
[答案]2
三、解答题
13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01).
[解析]令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-12<0,f(0)=1>0,
说明方程f(x)=0在区间(-1,0)内有一个零点.
取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5).
再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75).
同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625).
由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77.
14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2.
[解析]令f(x)=(x-2)(x-5)-1
∵f(2)=f(5)=-1<0,且f(0)=9>0.
f(6)=3>0.
∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2.
15.求函数y=x3-2x2-x+2的零点,并画出它的简图.
[解析]因为x3-2x2-x+2=x2(x-2)-(x-2)
=(x-2)(x2-1)=(x-2)(x-1)(x+1),
所以函数的零点为-1,1,2.
3个零点把x轴分成4个区间:
(-∞,-1],[-1,1],[1,2],[2,+∞].
在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表:
x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …
y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 …
在直角坐标系内描点连线,这个函数的图象如图所示.
16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1)
[解析]原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0.
取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下
端点或中点横坐标 端点或中点的函数值 定区间
a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0]
x0=-1+02=-0.5
f(x0)=3.375>0 [-1,-0.5]
x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75]
x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875]
x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875]
∵|-0.875-(-0.9375)|=0.0625<0.1,
∴原方程在(-1,0)内精确到0.1的近似解为-0.9.
17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围.
[解析]∵f(x)=log3(ax2-x+a)有零点,
∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解.
当a=0时,x=-1.
当a≠0时,若ax2-x+a-1=0有解,
则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0,
解得1-22≤a≤1+22且a≠0.
综上所述,1-22≤a≤1+22.
18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).
[解析]设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.
取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5).
再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375).
同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375).
由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3.
高一数学下册期末试卷及答案相关文章:
★高一数学下册期末试卷及答案
★高一数学下学期期末试卷及参考答案
★高一年级数学试卷下册期末
★高一数学期末考试知识点总结
★2020高一期末数学复习计划汇总精选
★高一数学考试反思5篇
★高一期末考试数学备考方法
★高一期末数学复习计划5篇
★2020初一暑假作业参考答案历史(人教版)
★高一数学学习方法和技巧大全
高一数学期末同步测试题
ycy
说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:(每小题5分,共60分,请将所选答案填在括号内)
1.函数 的一条对称轴方程是 ()
A. B. C. D.
2.角θ满足条件sin2θ<0,cosθ-sinθ<0,则θ在 ()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ()
A.B.- C. ±D.-
4.已知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC
是 ( )
A.任意三角形 B.直角三角形C.等腰三角形D.等边三角形
5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ()
A.充分不必要条件B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.化简 的结果是()
A. B.C.D.
7.已知向量 ,向量 则 的最大值,最小值分别是()
A.B.C.16,0 D.4,0
8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ()
A.y=cos2xB.y=-sin2x
C.y=sin(2x- ) D.y=sin(2x+ )
9.谈厅 ,则y的最小值为()
A.– 2 B.– 1 C.1 D.
10.在下列区间中掘腔,是函数 的一个递增区间的是 ()
A.B. C. D.
11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ()
A.(2,-1) B.(-2,1) C.(-2,-1)D.(2,1)
12. 的最小正周期是 ()
A. B.C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题:(每小题4分,共16分,请将答案填在横线上)
13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.
14. ,则 的夹角为____.
15.y=(1+sinx)(1+cosx)的最大值为___ ___.
16.在 中, , ,那么 的大小为___________.
三、解答题:(本大题共74分,17—21题每题12分,22题14分)
17.已知
(I)求 ;
(II)当k为何实数时,k与 平行, 平行时它们是同向还是反向?
18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0,],且| f(x) |<2,求a的取含散隐值范围.
19.已知函数 .
(Ⅰ)求函数f (x)的定义域和值域;
(Ⅱ)判断它的奇偶性.
20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1- 且x∈[- , ],求x;
(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m|< )平移后得到函数y=f(x)的图象,
求实数m、n的值.
21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?
22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是
某日水深的数据
t (小时) 0 3 6 9 12 15 18 21 24
y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察: 的曲线可近似看成函数 的图象(A > 0, )
(I)求出函数 的近似表达式;
(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
高一数学测试题—期末试卷参考答案
一、选择题:
1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C
二、填空题:
13、(4,2)14、15、16、
三、解答题:
17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ == .
②k= k(1,0)-(2,1)=(k-2,-1). 设k=λ( ),即(k-2,-1)= λ(7,3),
∴. 故k=时, 它们反向平行.
18.解析:
,
解得 .
19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为
且x≠ }
(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)
∴f(x)为偶函数.
(3) 当x≠ 时
因为
所以f(x)的值域为 ≤ ≤2}
20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).
由1+2sin(2x+ )=1- ,得sin(2x+ )=- .
∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,
即x=- .
(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.
由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m|< ,∴m=- ,n=1.
21.解析:在 中, , ,
,由余弦定理得
所以 .
在 中,CD=21,
= .
由正弦定理得
(千米).所以此车距城A有15千米.
22.解析:(1)由已知数据,易知 的周期为T = 12
∴
由已知,振幅
∴
(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)
∴
∴
∴
故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.
第Ⅰ卷(选择题,共60分)
一、选择题:(每小题5分,共60分,请将所选答案填在括号内)
1.函数 的一条对称轴方程是 ( )
A. B. C. D.
2.角θ满足条件sin2θ<0,cosθ-sinθ<0,则θ在 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.己知sinθ+cosθ= ,θ∈(0,π),则cotθ等于 ( )
A. B.- C. ± D.-
4.已码扰知O是△ABC所在平面内一点,若 + + = ,且| |=| |=| |,则△ABC
是 ( )
A.任意三角形 B.直角三角形 C.等腰三角形 D.等边三角形
5.己知非零向量a与b不共线,则 (a+b)⊥(a-b)是|a|=|b|的 ( )
A.充分不必要坦模御条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件让岩
6.化简 的结果是 ( )
A. B. C. D.
7.已知向量 ,向量 则 的最大值,最小值分别是( )
A. B. C.16,0 D.4,0
8.把函数y=sinx的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不 变,再把 图象向左平移 个单位,这时对应于这个图象的解析式 ( )
A.y=cos2x B.y=-sin2x
C.y=sin(2x- ) D.y=sin(2x+ )
9. ,则y的最小值为 ( )
A.– 2 B.– 1 C.1 D.
10.在下列区间中,是函数 的一个递增区间的是 ( )
A. B. C. D.
11.把函数y=x2+4x+5的图象按向量 a经一次平移后得到y=x2的图象,则a等于 ( )
A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)
12. 的最小正周期是 ( )
A. B. C. D.
第Ⅱ卷(非选择题,共90分)
二、填空题:(每小题4分,共16分,请将答案填在横线上)
13.已知O(0,0)和A(6,3),若点P分有向线段 的比为 ,又P是线段OB的中点,则点B的坐标为________________.
14. ,则 的夹角为_ ___.
15.y=(1+sinx)(1+cosx)的最大值为___ ___.
16.在 中, , ,那么 的大小为___________.
三、解答题:(本大题共74分,17—21题每题12分,22题14分)
17.已知
(I)求 ;
(II)当k为何实数时,k 与 平行, 平行时它们是同向还是反向?
18.已知函数f(x)=2cos2x+ sin2x+a,若x∈[0, ],且| f(x) |<2,求a的取值范围.
19.已知函数 .
(Ⅰ)求函数f (x)的定义域和值域;
(Ⅱ)判断它的奇偶性.
20.设函数 ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1- 且x∈[- , ],求x;
(Ⅱ)若函数y=2sin2x的图象按向量 =(m,n)(|m|< )平移后得到函数y=f(x)的图象,
求实数m、n的值.
21.如图,某观测站C在城A的南偏西 方向上,从城A出发有一条公路,走向是南偏东 ,在C处测得距离C处31千米的公路上的B处有一辆正沿着公路向城A驶去,行驶了20千米后到达D处,测得C、D二处间距离为21千米,这时此车距城A多少千米?
22.某港口水深y(米)是时间t ( ,单位:小时)的函数,记作 ,下面是
某日水深的数据
t (小时) 0 3 6 9 12 15 18 21 24
y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察: 的曲线可近似看成函数 的图象(A > 0, )
(I)求出函数 的近似表达式;
(II)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
高一数学测试题—期末试卷参考答案
一、选择题:
1、A2、B3、B4、D 5、C 6、C 7、D 8、A 9、C10、B 11、A12、C
二、填空题:
13、(4,2) 14、 15、 16、
三、解答题:
17.解析:① = (1,0) + 3(2,1) = ( 7,3) , ∴ = = .
②k = k(1,0)-(2,1)=(k-2,-1). 设k =λ( ),即(k-2,-1)= λ(7,3),
∴ . 故k= 时, 它们反向平行.
18.解析:
,
解得 .
19.解析: (1) 由cos2x≠0得 ,解得x≠ ,所以f(x)的定义域为
且x≠ }
(2) ∵f(x)的定义域关于原点对称且f(-x)=f(x)
∴f(x)为偶函数.
(3) 当x≠ 时
因为
所以f(x)的值域为 ≤ ≤2}
20.解析:(Ⅰ)依题设,f(x)=2cos2x+ sin2x=1+2sin(2x+ ).
由1+2sin(2x+ )=1- ,得sin(2x+ )=- .
∵- ≤x≤ ,∴- ≤2x+ ≤ ,∴2x+ =- ,
即x=- .
(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.
由(Ⅰ)得 f(x)=2sin2(x+ )+1. ∵|m|< ,∴m=- ,n=1.
21.解析:在 中, , ,
,由余弦定理得
所以 .
在 中,CD=21,
= .
由正弦定理得
(千米).所以此车距城A有15千米.
22.解析:(1)由已知数据,易知 的周期为T = 12
∴
由已知,振幅
∴
(2)由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米)
∴
∴
∴
故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时
1D
2C
3A
4C
5A
6B
7,[3π/4,π)∪[π/4,+∞)
8,6
9(1),
∵2acosC-c=2b,cosC=(a²+b²-c²)/2ab,
∴a²=b²+c²哪裤-bc
∵a²汪闭=b²困缓裂+c²-2bccosA
∴cosA=1/2
∴A=π/3,
(2),