高二数学数列知识点总结?(3)利用二次函数的图象确定Sn的最值时,最高点的`纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧 已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,那么,高二数学数列知识点总结?一起来了解一下吧。
一般地,如果一个数列[1]从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。在运用等比数列[2]的前n和时,一定要注意讨论公比q是否为1。
另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,一个正项等比数列与等差数列是“同构”的。
等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。
(1)无穷递缩等比数列各项和公式:
无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。
(2)由等比数列组成的新的等比数列的公比:
{an}是公比为q的等比数列
1、若A=a1+a2+……+an
等比数列公式
B=an+1+……+a2n
C=a2n+1+……a3n
则,A、B、C构成新的等比数列,公比Q=q^n
2、若A=a1+a4+a7+……+a3n-2
B=a2+a5+a8+……+a3n-1
C=a3+a6+a9+……+a3n
则,A、B、C构成新的等比数列,公比Q=q
2公式性质
(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
(2)在等比数列中,依次每 k项之和仍成等比数列。
【 #高二#导语】高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。这可谓是学生们第一次完全自己把握、风险未知的主动选择。 无 高二频道为你整理了《高二下学期数学知识点整理》,助你金榜题名!
1.高二下学期数学知识点整理
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算
2.高二下学期数学知识点整理
1.两角和与差的正弦、余弦和正切公式:
重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。
我们在学习当中认真预习好新的课程,上课专心听讲;不懂的及时请教老师或者同学。放学回来要认真把老师布置的作业完成,并且把课堂上学过的知识好好温习一遍;这样才能把学过的内容牢牢地记在脑子里。以下是我给大家整理的高二数学必修五知识点总结,希望能帮助到你!
高二数学必修五知识点总结1
1.等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2.等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3.前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
想要知道高二数学学些什么的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“高二数学知识点归纳总结?”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
高二数学知识点归纳总结
一、集合、简易逻辑
1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列
1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
高中数学课本中讲到,按一定次序排列的一列数称为数列。下面是我给大家带来的高二数学数列知识点总结,希望对你有帮助。
1、高二数学数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项。
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列。
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…。
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n。
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别。如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合。
以上就是高二数学数列知识点总结的全部内容,an=am+(n-m)d 它可以看作等差数列广义的通项公式。二、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N 三、若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq 四、对任意的k∈N*,有 Sk,S2k-Sk,S3k-S2k,…。