高中数学思想方法有哪些?高中数学思想方法包括转化、逻辑、逆向、对应、类比等五种方法。1、转化方法:转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。2、那么,高中数学思想方法有哪些?一起来了解一下吧。
高中数学思想方法包括转化、逻辑、逆向、对应、类比等五种方法。
1、转化方法:转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。
2、逻辑方法:逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。
3、逆向方法:逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
4、对应方法:对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
5、类比方法:类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
一、培养语言表达能力
促进学生思维发展实践证明,看的思维效率最低、写的思维效率较高、说的思维效率最高,有许多思维的飞跃和问题的突破正是在说的过程中实现的。思维和语言是密切联系着的,语言是思维的“外壳”,思维是语言的“内核”,思维决定着语言的表达,反过来语言又促进思维的发展,使思维更富有条理,两者相互依存。人们正是借助语言思考问题,表达思想的。在数学课堂教学 中,语言是师生、生生间情感交流、数学思维的工具。小学 生数学思维的形成与发展是借助语言来实现的,发展学生的思维,必须相应地发展学生的语言。
首先,教师要努力做到数学语言应用的目的性、科学性、逻辑性、规范性、启发性。教学中教师要考虑小学生的语言特点,用生动有趣的语言,拨动学生的心弦,激活学生思维。
其次,教师要给学生充分提供语言训练的机会,培养学生用确切的、完整的、简练的、清晰的语言来表达思维的结果,做到思维与语言表达的统一。要经常让学生亲自动笔、动口、动手,将数学语言的准确性、严密性、逻辑性、示范性挂在学生口中,印在学生脑中,让学生“手上会做”、“脑中会想”、“嘴上会说”,使学生的思维向深层次发展。学生在回答问题时,教师不能只要求意思答对就行,还应要求学生把在感知事物过程中所进行的比较、分析、综合、抽象、概括、判断、推理等思维过程表达清楚,要求说话完整、语言清晰准确,用逻辑性语言表达,力求精炼明了地说明问题。
数学是理科中逻辑思维要求最强的科目,学好它就要先学会思维打开的方法,独立思考问题的能力,而不是盲目听风,海量做题!问题认识不清楚,朦胧的状态能学好它吗?有时间聊聊,我帮你引导一下正确的思维和知识框架qq1587065761
一、数形结合思想
数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。
应用数形结合的思想,应注意以下数与形的转化:
(1)集合的运算及韦恩图;
(2)函数及其图象;
(3)数列通项及求和公式的函数特征及函数图象;
(4)方程(多指二元方程)及方程的曲线。
以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。
二、分类讨论思想
分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。
高中数学八大思想十大方法如下:
八大思想是1、数形结合思想,数形结合思想是根据数学问题的题设和结论之间的内在联系,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。将数字化为图形,或能从图形中获取有用的解题数字,是数形结合思想的关键所在。
利用数学结合思想解题的关键是明确数,形之间的紧密联系,数问题可利用形去解决,形的问题可利用数去解决。注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化。
2、转化与划化思想,化归思想,将一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。普遍联系和永恒发展是转化划归思想的哲学基础。一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题。
化归不仅是一种重要解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。所谓的化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。
以上就是高中数学思想方法有哪些的全部内容,1、转化思想:是一种重要的数学思想方法,所谓转化思想,就是把所要解决的问题转化为另一个较易解决的问题或已经解决的问题,具体地说,就是说把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”转化为“简单”,把“陌生”转化为“熟悉”,最终获得解原题的一种手段或方法。