数学认知?数学认知,就是学生头脑里的数学知识按照自己的理解深度、广度,结合着自己的感觉、知觉、记忆、思维、联想等认知特点,组成的一个具有内部规律的整体结构"。数学认知是数学知识结构与学生心理结构相互作用的产物。学生的数学认知结构是由教材知识结构转化而来的,那么,数学认知?一起来了解一下吧。
一、数学认知结构的概念
简单地讲,数学认知结构就是学生头脑里获得的数学知识结构,只不过是一种经过学生主观改造后的数学知识结构,它是数学知识结构与学生心理结构相互作用的产物,其内容包括数学知识和这些数学知识在头脑里的组织方式与特征。
二、数学认知结构与数学知识结构的区别
数学认知结构和数学知识结构是两个不同的概念,它们之间既有密切的内在联系,又在严格的区别。两者的联系主要反映为学生的数学认知结构是由教材中的数学知识结构转化而来的,数学知识结构是数学认知结构赖以形成的物质基础和客观依据、两者的区别主要表现在以下几个方面:
l.概念的内涵不同。数学知识结构是由数学概念和命题构成的数学知识体系,它以最简约、最概括的方式反映了人类对世界数量关系和空间形式的认识成果,是科学真理的客观反映。而数学认知结构是一种经过学生主观改造的数学知识结构,它是数学知识结构与儿童心理结构高度融合的结果,其内容既反映了数学知识的客观性,又体现了认知主体的主观性。
2.信息的表达方式不同。数学知识结构和数学认知结构都是表达信息的,但两者在信息表达的方式上却有着明显的区别。教材中的数学知识结构是用文字和符号详尽表达有关世界数量关系和空间形式认识成果的信息的。
数学认知的三个目标:
第一个,是有关数学的感知体验和态度——感知生活中数学的有用和有趣
第二个,是有关数、量和数量关系
第三个,是形状和空间
幼儿园小班的孩子一般处于3-4岁,应国家发布的《3—6岁儿童发展指南》要求,幼儿对数学的认知需要具备以下几方面:
1、学习数学的兴趣
当幼儿感知和发现到周围物体的多样性时,便能体验和发现生活中很多地方都能用到数学,对数学学习开始感兴趣。
2、主动探索操作,寻求答案
基于幼儿对数学感兴趣,便会主动探索,通过不同方法寻求答案,过程中智力得到开发,多项数学能力也得到提高。
3、感知实物,学会比较
幼儿在这个阶段能注意物体较明显的形状特征,并能用自己的语言描述,能感知物体基本的空间位置与方位,理解上下、前后、里外等方位词。
4、理解数和数量
结合具体事物让幼儿通过多次比较,逐渐理解数字和数量的意义。
数学认知,就是学生头脑里的数学知识按照自己的理解深度、广度,结合着自己的感觉、知觉、记忆、思维、联想等认知特点,组成的一个具有内部规律的整体结构"。数学认知是数学知识结构与学生心理结构相互作用的产物。学生的数学认知结构是由教材知识结构转化而来的,它一方面保留了数学知识结构的抽象性和逻辑性等特点,另一方面又融进了学生感知、理解、记忆、思维和想象等心理特点,它是科学的数学知识结构与学生心理结构相互作用、协调发展的结果。在其发展过程中两者表现出互相影响、互相促进、辩证统一的发展态势,一方面数学知识结构直接影响着学生心理结构的发展,不仅规定着数学认知结构的内容和发展方向,同:时还制约着学生感知、理解等心理活动的过程和方式;另一方面学生的心理结构又不断地改造着数学知识结构,使数学知识结构变成与他们心理发展水平和认知特点相适应的数学认知结构。
认知方法:同化认知、顺应认知。
同化:在数学学习中,同化是指学生在学习中将新的数学知识直接纳入认知结构,扩大原有认知结构,使数学认知结构发生量变的过程。必要条件:是所学习的新知识与原有认知结构中的有关内容相联系,即原有认知结构中有能够同化新知识的旧知识。 同化主要适用于那些与旧知识有密切联系的新知识的学习。
顺应:是指某些新的数学知识不能直接同化到学生原有认知结构中去,必须适当调整或改造学生的原有认知结构使其适应新知识的学习,在此基础上将新知识纳入改造后的认知结构中去,从而建立新的数学认知结构的过程。简言之,顺应就是改造原有认知结构而建立新的数学认知结构的过程。顺应主要适合于那些与旧知识没有直接联系的新知识的学习。
以上就是数学认知的全部内容,非数学领域的知识和技能。数学认知是指个体对数学知识、概念、原理和方法的理解和运用能力,包括了数字、代数、几何、统计等方面的知识和技能。因此,不包括非数学领域的知识和技能。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。