初三下册数学知识点?打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些,木匠是打不出家具的;有了这些,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、那么,初三下册数学知识点?一起来了解一下吧。
每一门科目都有自己的学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初三数学知识点的学习资料,希望对大家有所帮助。
九年级下册数学知识点归纳
知识点1.概念
把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形斗握的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点5.相似三角的判定方启灶法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两空旁庆个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点6.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
(4)射影定理
苏教版数学九年级知识点
1二次根式:形如式子为二次根式;
性质:是一个非负数;
2二次根式的乘除:
3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.
4海伦-秦九韶公式:,S是的面积,p为.
1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.
2配方法:将方程的一边配成完全平方式,然后两边开方;
因式分解法:左边是两个因式的乘积,右边为零.
3一元二次方程在实际问题中的应用
4韦达定理:设是方程的两个根,那么有
1:一个图形绕某一点转动一个角度的图形变换
性质:对应点到中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等.
2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3关于原点对称的点的坐标
1圆、圆心、半径、直径、圆弧、弦、半圆的定义
2垂直于弦的直径
圆是图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧.
3弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
4圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.
5点和圆的位置关系
点在圆外d>r
点在圆上d=r
点在圆内dR+r
外切d=R+r
相交R-r
初三数学复习资料
反比例函数、相似、锐角三角函数和投影与视图。
第二十七章相似
一、图形的相似
1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。
2.判定:如果两个多边形满足对旅瞎应角相等,对应边的比相等,那么这两个多边形相似。 3.相似比:相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。
二、相似三角唤镇拆形
1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角和枣形与原三角形相似。
2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 (①三边对应成比例②两个三角形的两个角对应相等;③两边对应成比例,且夹角相等;
④相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。)
3.相似三角形应用
4 视点:眼睛的位置;仰角:视线与水平线的夹角;盲区:看不到的区域。
4.相似三角形的周长与面积:①相似三角形周长的比等于相似比。
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初三数学知识点,希望对大家有所帮助。
九年级下册数学知识点归纳
知识点1.概念
把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d,昌仔如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点5.相似三角的判定方法
(1)定义:对应角相等,对应森仔边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点6.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
(4)射影定理
九年级下册数学知识点总结
直线与圆的位置关系
①直线和圆无公共点,称相离。
学习的成功与失败原因是多方面的,要首先从自己身上找原因,才能受到鼓舞,找出努力的方向。每一门科目都有自己的学习 方法 ,圆缺但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。
初三年级下学期数学知识点
【二次函数的图像与性质】
二次函数的概念:一般地,形如ax^2+bx+c=0的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.
二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
【二次函数的应用】
在公路、桥梁、隧道、城市建设等很多方面都有抛物线型;生产和生活中,有很多“利润”、“用料最少”、“开支最节约”、“线路最短”、“面积”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。
初三下册数学知识点总结2020篇一
一、锐角三角函数
正弦等于对边比斜边
余弦等于邻边比斜边
正切等于对边比邻边
余切等于邻边比对边
正割等于斜边比邻边
二、三角函数的计算
幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.
泰勒展开式(幂级数展开法)
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
三、解直角三角形
1.直角三角形两个锐角互余。
2.直角三角形的三条高交点在一个顶点上。
3.勾股定理:两直角边平方和等于斜边平方
四、利用三角函数测高
1、解直角三角形的应用
(1)通过解直角三角形能解决实际问题中的很多有关测量问.
如:测不易直接测量的物体的高度、测河宽等慧世,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
(2)解直角三角形的一般过程是:
①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).
②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
初三下册数学知识点总结2020篇二
半径与弦长计算,弦心距来中间站。
以上就是初三下册数学知识点的全部内容,二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般的。