高一三角数学题?解: 原式= 1/2sin10° -√3/2cos10° =(cos10°-√3sin10°)/2sin10°cos10° =2(1/2cos10°-√3/2 sin10°)/sin20° =2(sin30°cos10°-cos30°sin10°)/sin20° =2sin20°/sin20 ° =2。那么,高一三角数学题?一起来了解一下吧。
1.(cosx-sinx)^2=1-2sinx*cosx=2/3
π/4 ==>cosx-sinx>0 ==>cosx-sin=√6/3 2.sinA≤√3/2 ==>0≤A≤π/3,2π/3≤A≤π cosA≥√3/2 ==>0≤A≤π/6 ==>0≤A≤π/6 3.sinA+cosA+3>0是恒成立的 (tanA-3)(sinA+cosA+3)=0 ==>tanA-3=0 ==>tanA=3 ==>3/2(sinA)^2+1/4(cosA)^2 =[3/2(sinA)^2+1/4(cosA)^2]/[(sinA)^2+(cosA)^2] =[3/2(tanA)^2+1/4]/[(tanA)^2+1] =11/8 4.[sinA+cosA]^2=1/25=1+2sinAcosA ==>sinAcosA=-12/25 ==>(sinAcosA)^2=144/625 [a+b]^3=a^3+b^3+3a^2b+3ab^2 ==>1={(sinA)^2+(cosA)^2}^3=(sinA)^6+(cosA)^6+3(sinA)^4(cosA)^2+3(sinA)^2(cosA)^4 =(sinA)^6+(cosA)^6+3*(sinA)^2*144/625+3*(cosA)^2*144/625 =(sinA)^6+(cosA)^6+432/625 ==>(sinA)^6+(cosA)^6=193/625 5.0