高一数学大题以及答案?第14题 麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series 不用对数表,计算一个给定数的对数。第15题 牛顿正弦及余弦级数Newton's Sine and Cosine Series 不用查表计算已知角的正弦及余弦三角函数。那么,高一数学大题以及答案?一起来了解一下吧。
已知(1+tanα)/(1-tanα)=3,求(2sinα-3cosα)/(4sinα-9cosα)的值。
解:由(1+tanα)/(1-tanα)=3,得1+tanα=3-3tanα,故4tanα=2,tanα=1/2.
于是(2sinα-3cosα)/(4sinα-9cosα)=(2tanα-3)/(4tanα-9)=(1-3)/(2-9)=2/7.
已知实数 ,求函数 的零点。16.(本题满分12分)已知函数 .(Ⅰ)求 的定义域;(Ⅱ)证实:函数 在定义域内单调递增.17.(本题满分14分)某商品每件成本9元,售价为30元,每星期卖出432件. 假如降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值 (单位:元, )的平方成正比.已知商品单价降低2元时,一星期多卖出24件.(Ⅰ)将一个星期的商品销售利润表示成 的函数;(Ⅱ)如何定价才能使一个星期的商品销售利润最大?18.(本题满分14分)若函数y= x3- ax2 (a-1)x 1在区间(1,4)内为减函数,在区间(6, ∞)内为增函数,试求实数a的取值范围.19.(本题满分14分)两个二次函数 与 的图象有唯一的公共点 ,(Ⅰ)求 的值;(Ⅱ)设 ,若 在 上是单调函数,求 的范围,并指出是单调递增函数,还是单调递减函数。20.(本题满分14分)设函数y= 是定义在R上的函数,并且满足下面三个条件: ①对任意正数x、y,都有; ②当x>1时, <0; ③ .(Ⅰ)求 的值;(Ⅱ)证实 上是减函数;(Ⅲ)假如不等式 成立,求x的取值范围。 15.(本题满分12分)解: , 可能等于1或 或 。
在高中数学实践中,指数与指数幂也是高中数学考试常考的内容,下面是我给高一学生带来的数学指数与指数幂的计算题及答案解析,希望对你有帮助。
高一数学指数与指数幂的计算题(一)
1.将532写为根式,则正确的是()
A.352B.35
C.532 D.53
解析:选D.532=53.
2.根式 1a1a(式中a>0)的分数指数幂形式为()
A.a-43 B.a43
C.a-34 D.a34
解析:选C.1a1a= a-1•a-112= a-32=(a-32)12=a-34.
3.a-b2+5a-b5的值是()
A.0 B.2(a-b)
C.0或2(a-b) D.a-b
解析:选C.当a-b≥0时,
原式=a-b+a-b=2(a-b);
当a-b<0时,原式=b-a+a-b=0.
4.计算:(π)0+2-2×(214)12=________.
解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.
答案:118
高一数学指数与指数幂的计算题(二)
1.下列各式正确的是()
A.-32=-3 B.4a4=a
C.22=2 D.a0=1
解析:选C.根据根式的性质可知C正确.
4a4=|a|,a0=1条件为a≠0,故A,B,D错.
2.若(x-5)0有意义,则x的取值范围是()
A.x>5 B.x=5
C.x<5 D.x≠5
解析:选D.∵(x-5)0有意义,
∴x-5≠0,即x≠5.
3.若xy≠0,那么等式 4x2y3=-2xyy成立的条件是()
A.x>0,y>0 B.x>0,y<0
C.x<0,y>0 D.x<0,y<0
解析:选C.由y可知y>0,又∵x2=|x|,
∴当x<0时,x2=-x.
4.计算2n+12•122n+14n•8-2(n∈N*)的结果为()
A.164 B.22n+5
C.2n2-2n+6 D.(12)2n-7
解析:选D.2n+12•122n+14n•8-2=22n+2•2-2n-122n•23-2=2122n-6=27-2n=(12)2n-7.
5.化简 23-610-43+22得()
A.3+2 B.2+3
C.1+22 D.1+23
解析:选A.原式= 23-610-42+1
= 23-622-42+22= 23-62-2
= 9+62+2=3+2.X k b 1 . c o m
6.设a12-a-12=m,则a2+1a=()
A.m2-2 B.2-m2
C.m2+2 D.m2
解析:选C.将a12-a-12=m平方得(a12-a-12)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+1a=m2+2⇒a2+1a=m2+2.
7.根式a-a化成分数指数幂是________.
解析:∵-a≥0,∴a≤0,
∴a-a=--a2-a=--a3=-(-a)32.
答案:-(-a)32
8.化简11+62+11-62=________.
解析: 11+62+11-62=3+22+3-22=3+2+(3-2)=6.
答案:6
9.化简(3+2)2010•(3-2)2011=________.
解析:(3+2)2010•(3-2)2011
=[(3+2)(3-2)]2010•(3-2)
=12010•(3-2)= 3-2.
答案:3-2
10.化简求值:
(1)0.064-13-(-18)0+1634+0.2512;
(2)a-1+b-1ab-1(a,b≠0).
解:(1)原式=(0.43)-13-1+(24)34+(0.52)12
=0.4-1-1+8+12
=52+7+12=10.
(2)原式=1a+1b1ab=a+bab1ab=a+b.
11.已知x+y=12,xy=9,且x
解:x12-y12x12+y12=x+y-2xy12x-y.
∵x+y=12,xy=9,
则有(x-y)2=(x+y)2-4xy=108.
又x
代入原式可得结果为-33.
12.已知a2n=2+1,求a3n+a-3nan+a-n的值.
解:设an=t>0,则t2=2+1,a3n+a-3nan+a-n=t3+t-3t+t-1
=t+t-1t2-1+t-2t+t-1=t2-1+t-2
=2+1-1+12+1=22-1.
高一数学知识点
幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
如图,在△ABC中,|AB−→−|=3,|AC−→−|=1,l为BC的垂直平分线且交BC于点D,E为l上异于D的任意一点,F为线段AD上的任意一点。
(1)求AD−→−⋅(AB−→−−AC−→−)的值;
(2)判断AE−→−⋅(AB−→−−AC−→−)的值是否为一常数,并说明理由;
(3)若AC⊥BC,求AF−→−⋅(FB−→−+FC−→−)的最大值。
平面向量数量积的运算
(1)根据向量的平行四边形法则,
AD
=
1
2
(
AB
+
AC
),所以带入即可求解.
(2)
AE
•(
AB
-
AC
)是否为常数,求出来看一下就可以了.将
AE
=
AD
+
DE
带入即可,因为DE⊥BC,所以
DE
•(
AB
-
AC
)=
DE
•
CB
=0,这样便能求出它的值了.
(3)因为
FB
+
FC
=2
FD
,所以
AF
•(
FB
+
FC
)=2
AF
•
FD
,这时候,
AF
与
FD
共线,且都可以用
AD
表示.设
AF
=λ
AD
,则
FD
=(1-λ)
AD
,所以带入便得到2λ(1-λ)
AD
2,根据条件求出AD的长度即可.
(1)AD−→−⋅(AB−→−−AC−→−)=12(AB−→−+AC−→−)(AB−→−−AC−→−)=12(AB−→−2−AC−→−2)=4=12(AB−→−2−AC−→−2)=4,
(2)AE−→−⋅(AB−→−−AC−→−)=(AD−→−+DE−→−)⋅(AB−→−−AC−→−)=AD−→−⋅(AB−→−−AC−→−)+DE−→−⋅CB−→−=4,
∴AE−→−⋅(AB−→−−AC−→−)的值是一常数。
f(x)=5sinxcosx-5根号3cos平方x+5/2根号3
=5(1/2 *sin2x-√3cos²x+√3/2)
=5[1/2 *sin2x-√3/2*(2cos²x -1)]
=5(1/2 sin2x-√3/2*cos2x)
=5sin(2x- π/3)
(1)周期T=2π/2 =π
(2)由-π/2 +2kπ《2x- π/3《π/2 +2kπ
得-π/12 +kπ《x《5π/12 +kπ
∴函数的单调增区间是[-π/12 +kπ,5π/12 +kπ]k∈Z
由π/2 +2kπ《2x- π/3《3π/2 +2kπ
得由5π/12+ kπ《x《11π/12 +kπ
∴函数的单调减区间是[5π/12 +kπ,11π/12 +kπ]k∈Z
(3)由2x- π/3=π/2 +kπ 得函数的对称轴方程x=5π/12 +kπ/2
由2x- π/3=kπ 得x=π/6+kπ/2 ∴对称中心坐标是(π/6+kπ/2 , 0)k∈Z
以上就是高一数学大题以及答案的全部内容,解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.答案:118 高一数学指数与指数幂的计算题(二)1.下列各式正确的是()A.-32=-3 B.4a4=a C.22=2 D.a0=1 解析:选C.根据根式的性质可知C正确.4a4=|a|,a0=1条件为a≠0。