目录八年级下册生物完全考卷答案 八年级下册数学课时练电子版图片 物理八年级人教版课时练 八年级下册数学课时练答案冀教版 八年级数学课时练下册电子版
第1章 平行线【1.1】1.∠4,∠4,∠2,∠5 2.2,1,3,BC 3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD 和∠DEC,同旁内角是∠AFD 和∠AED6.各4对.同位角有∠B 与∠GAD,∠B 与∠DCF,∠D 与∠HAB,∠D 与∠ECB;内错角有∠B 与∠BCE,∠B 与∠HAB,∠D 与∠GAD,∠D 与∠DCF;同橘渗旁内角有∠B 与∠DAB,∠B 与∠DCB,∠D 与∠DAB,∠D与∠DCB
【1.2(1)】1.(1)AB,CD (2)∠3,同位角相等,两直线平行 2.略3.AB∥CD,理由略 4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF 分别是∠ADE 和∠ABC 的角平分线,得∠ADG=12∠ADE,∠ABF= 12 ∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF
【1.2(2)】1.(1)2,4,内错角相等,两直线平行 (2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行 (2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以
∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB 与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略
【1.3(1)】1.D 2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°. ∵ AB∥CD, ∴ α=β6.(1)∠B=∠D (2)由2x+15=65-3x解得x=10,所以∠1=35°
【1.3(2)】1.(1)两直线平行,同位角相等 (2)两直线平行,内错角相等2.(1)× (2)× 3.(1)DAB
(2)BCD4.∵ ∠1=∠2=100°, ∴ m∥n(内错角相等,两直线平行).∴ ∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴
∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′耐伍配E=∠B=90°=∠D又
∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.
【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章 特殊三角形2.AB 与CD 平行.量得线段BD 的长约为2cm,所以两电线杆间的距离约为120m
【2.1】3.15cm 4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD. ∴ △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm 4.16或176.AB=BC.理 由 如 下:作 AM ⊥l5.如图,答案不,图中点C1,C2,C3均可2于 M,BN ⊥l3于 N,则 △ABM ≌△BCN,得AB=BC6.(1)略 (2)CF=1昌指5cm7.AP 平分∠BAC.理由如下:由 AP 是中线,得 BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.50
2.(1)∠4 (2)∠3 (3)∠1 ∴ ∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等
【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70°
(2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS)
BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180
【答案】: 课时达标
1、C
课后作业
1、A
2、裂链誉 5000
3、肆段(1)32.4千唤拍克 (2)35640元
4、(1)1500km (2)6825.6元
5、 1680
考点:反比例函数的应用.
分析:(1)根据函数的概念和所给的已知条件即可列出关系式;
(2)结合实际即可得出时间t的取值范围;
(3)根据(1)中的函数关系式,将t=8代入即可得出池中的水;
(4)结合已知,可知Q=100,代入函数关系式中即可得出时间t.
解巧茄答:解:(1)由已知条件知,每小时放50立方米水,
则孙宽衡t小时后放水50t立方米,
而水池中总共有600立方米的水,
那么经过t时后,剩余的水为600-50t,
故剩余水的体积Q立方米与时间t(时)之间的函数关系式为:Q=600-50t;
(2)由于t为时间变量,所以 t≥0
又因为当t=12时将水池的水全部抽完了.
故自变量t的取值范围为:0≤t≤12;
(3)根据(1)式,当t=8时,Q=200
故8小时后,池中还剩200立方米水;
(则做4)当Q=100时,根据(1)式解得 t=10.
故10小时后,池中还有100立方米的水.
点评:本题考查了一次函数的应用,本题的关键是解决第一问,然后根据第一问,剩下的三个小问题代入自变量就可得出结果.
【答案】: 1、D
2、A
3、C
4、李肢弊B
5、90
6、(1)BD = CD,理哪族由略饥敏
(2)略
选择:16.1.1 CACBD 16.1.2第一课时 CBBD 第二课时CDC 第三课时森乎雹探索研究10.4lcm16.2.2 BD第二课时CCD 第三课时 CDBB 探索研究 2分之116.2.2 第二课时探索研究9.(1)第二步(@)分母丢掉了)(3)正确结果为1-a分之1 第四课时ADBAA 16.2.3 BADDBDB 1 -6/1 4 2/1 -3 第二课时 BCCBA 16.3 DC 第二课时 C 4 x=3 无解
更多问题此帆找我 要悬赏顷亮 我有答案