高考数学甘肃2017?全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建 全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆 全国Ⅲ卷地区:云南、广西、贵州、四川 海南省:全国Ⅱ卷(语、数、英)+单独命题(政、史、地、物、化、生)山东省:全国Ⅰ卷(外语、文综、那么,高考数学甘肃2017?一起来了解一下吧。
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)×公差
前n项的和Sn=首项×n+项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)
项数=(末项-首项)÷公差+1
数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差×项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n÷2
即(首项+末项)×项数÷2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
理科数学是77.58,文科数学是63.25。
根据甘肃省高考官网查询得知,2017年甘肃高考数学理科平均分是77.58,文科数学平均分是63.25。
甘肃,简称甘或陇,中华人民共和国省级行政区,省会兰州市。
top 1
浙江卷
点评
今年的浙江的数学试题选择题难度不大,填空题继续采用多空设问的形式,在其中穿插数学文化知识等考点,紧扣考纲,其中17题考查函数与绝对值问题,有一定难度。22题还是以数列作为压轴题,分布设问,让不同程度的学生都能拿分,有较好的区分度。与去年相比,题型变化不大,还是要注重通法通性的训练。
top 2
江苏卷
点评
今年的江苏的数学试题仍秉承“原创为主,试题紧扣教材,学生做起来有一种亲近感,具有“上手容易”的特点,有利于考生发挥真实的水平。部分题目综合性稍大了一些,注重对数学思想方法的考查,但解决问题的思路和方法还是常见的。
top 3
上海卷
点评
上海卷今年数学试卷不分文理,考查学生数学素养及应用能力成为试卷的亮点,体现“教考一致”的导向作用。上海卷压轴题目较难,解析几何题目计算量很大,增加了学生得分难度;21题函数大题考察函数性质与充要条件,难度依然较大,要求要求思维能力。
top 4
全国Ⅱ卷
使用省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆、海南
点评:
今年考试的出题风格与之前几年相比变化不大,既注重考查学生对基础知识的掌握程度,也加入了一些创新的元素,以此来检验学生能否灵活运用公式定理来解决实际问题。
2017年高考已经结束了,那么2017年高考总分多少分?各科的总分都是多少?下面是我整理的2017年各省高考总分,希望能给大家带来帮助!
2017年各省高考总分
就全国的形式来讲,大部分地区的总分值还是一样的,如:安徽、北京、福建、甘肃、广东、广西、贵州、河北、河南、黑龙江、湖北、湖南、吉林、江西、辽宁、内蒙、宁夏、青海、山东、山西、陕西、四川、天津、西藏、新疆、云南、重庆等27个省市还是750分满分。各科的分值详情如下:语文150分,数学150分,英语150分,文综/理综300分。
个别改革地区的分值详情需要大家做详细的了解,比如江苏、上海、浙江和海南这4个地区:
浙江地区的高考总分:
上海和浙江地区2017年采用的是3+3考试模式,即3门必考科目(语文、数学、英语)+选考科目,我们先来看浙江地区的总分:
其中语文、数学和外语三科满分各为150分,其中英语笔试满分120分,英语听力考试满分30分;综合(文/理)满分300分;自选模块满分60分;技术满分100分,由通用技术和信息技术两科目成绩按各占50%的比例合成。
需要特别提醒大家的是浙江的总分根据大家的选择而有所差异,即考生文化成绩总分按报考(含兼报)的不同考试类别分别合成。
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ²).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ 20.(12分) 已知椭圆C:x²/a²+y²/b²=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 21.(12分) 已知函数=ae²^x+(a﹣2)e^x﹣x. (1)讨论的单调性; (2)若有两个零点,求a的取值范围. (二)选考题:共10分。 以上就是高考数学甘肃2017的全部内容,top 1 浙江卷 点评 今年的浙江的数学试题选择题难度不大,填空题继续采用多空设问的形式,在其中穿插数学文化知识等考点,紧扣考纲,其中17题考查函数与绝对值问题,有一定难度。22题还是以数列作为压轴题,分布设问,让不同程度的学生都能拿分,有较好的区分度。与去年相比,题型变化不大。