当前位置: 首页 > 所有学科 > 数学

数学必修二公式,高中数学所有公式汇总

  • 数学
  • 2024-12-26

数学必修二公式?- 两面角和立体角 - 方块, 长方体, 平行六面体 - 四面体和其他棱锥 - 棱柱 - 八面体, 十二面体, 二十面体 - 圆锥,圆柱 - 球 - 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面 公理 立体几何中有4个公理:公理1 如果一条直线上的两点在一个平面内,那么,数学必修二公式?一起来了解一下吧。

计算公式大全

学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是我为大家整理的高一数学必修2公式总结,希望对大家有所帮助!

高一数学必修2公式汇总:

立体几何基本课题包括:

- 面和线的重合

- 两面角和立体角

- 方块, 长方体, 平行六面体

- 四面体和其他棱锥

- 棱柱

- 八面体, 十二面体, 二十面体

- 圆锥,圆柱

- 球

- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面

公理

立体几何中有4个公理:

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

公理2 过不在一条直线上的三点,有且只有一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

公理4 平行于同一条直线的两条直线平行.

立方图形

立体几何公式

名称 符号 面积S 体积V

正方体 a——边长 S=6a^2 V=a^3

长方体 a——长 S=2(ab+ac+bc) V=abc

b——宽

c——高

棱柱 S——底面积 V=Sh

h——高

棱锥 S——底面积 V=Sh/3

h——高

棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3

h——高

拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6

S2——下底面积

S0——中截面积

h——高

圆柱 r——底半径 C=2πr V=S底h=∏rh

h——高

C——底面周长

S底——底面积 S底=πR^2

S侧——侧面积 S侧=Ch

S表——表面积 S表=Ch+2S底

S底=πr^2

空心圆柱 R——外圆半径

r——内圆半径

h——高 V=πh(R^2-r^2)

直圆锥 r——底半径

h——高 V=πr^2h/3

圆台 r——上底半径

R——下底半径

h——高 V=πh(R^2+Rr+r^2)/3

球 r——半径

d——直径 V=4/3πr^3=πd^2/6

球缺 h——球缺高

r——球半径

a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3

球台 r1和r2——球台上、下底半径

h——高 V=πh[3(r12+r22)+h2]/6

圆环体 R——环体半径

D——环体直径

r——环体截面半径

d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4

桶状体 D——桶腹直径

d——桶底直径

h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)

平面解析几何包含一下几部分:

一 直角坐标

1.1 有向线段

1.2 直线上的点的直角坐标

1.3 几个基本公式

1.4 平面上的点的直角坐标

1.5 射影的基本原理

1.6 几个基本公式

二 曲线与议程

2.1 曲线的直解坐标方程的定义

2.2 已各曲线,求它的方程

2.3 已知曲线的方程,描绘曲线

2.4 曲线的交点

三 直线

3.1 直线的倾斜角和斜率

3.2 直线的方程

Y=kx+b

3.3 直线到点的有向距离

3.4 二元一次不等式表示的平面区域

3.5 两条直线的相关位置

3.6 二元二方程表示两条直线的条件

3.7 三条直线的相关位置

3.8 直线系

四 圆

4.1 圆的定义

4.2 圆的方程

4.3 点和圆的相关位置

4.4 圆的切线

4.5 点关于圆的切点弦与极线

4.6 共轴圆系

4.7 平面上的反演变换

五 椭圆

5.1 椭圆的定义

5.2 用平面截直圆锥面可以得到椭圆

5.3 椭圆的标准方程

5.4 椭圆的基本性质及有关概念

5.5 点和椭圆的相关位置

5.6 椭圆的切线与法线

5.7 点关于椭圆的切点弦与极线

5.8 椭圆的面积

六 双曲线

6.1 双曲线的定义

6.2 用平面截直圆锥面可以得到双曲线

6.3 双曲线的标准方程

6.4 双曲线的基本性质及有关概念

6.5 等轴双曲线

6.6 共轭双曲线

6.7 点和双曲线的相关位置

6.8 双曲线的切线与法线

6.9 点关于双曲线的切点弦与极线

七 抛物线

7.1 抛物线的定义

7.2 用平面截直圆锥面可以得到抛物线

7.3 抛物线的标准方程

7.4 抛物线的基本性质及有关概念

7.5 点和抛物线的相关位置

7.6 抛物线的切线与法线

7.7 点关于抛物线的切点弦与极线

7.8 抛物线弓形的面积

八 坐标变换·二次曲线的一般理论

8.1 坐标变换的概念

8.2 坐标轴的平移

8.3 利用平移化简曲线方程

8.4 圆锥曲线的更一般的标准方程

8.5 坐标轴的旋转

8.6 坐标变换的一般公式

8.7 曲线的分类

8.8 二次曲线在直角坐标变换下的不变量

8.9 二元二次方程的曲线

8.10 二次曲线方程的化简

8.11 确定一条二次曲线的条件

8.12 二次曲线系

九 参数方程

十 极坐标

高中数学必修2全部公式

一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t 7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

人教版-高中数学A版必修二的所有立体几何公式

点斜式

Y-Y1=K(X-X1)

斜截式

Y=KX+B

两点式

(Y-Y1)/(Y2-Y1)=(X-X1)/(X2-X1)

截距式

X/A+Y/B=1

一般式

AX+BY+C=0

两点间的距离公式:A(X1,Y1)

B(X2,Y2)

|AB|=((X1-X2)平方+(Y1-Y2)平方)开根号

高中数学分为几大模块

必修二

直棱柱侧面积:S=ch

c是底面周长,h是高

棱锥侧面积:S=1/2ch'

c是底面周长,h'是斜高

正棱台侧面积:S=(1/2)(c+c')h'

c、c'分别是上、下底面周长,h'是斜高

圆柱侧面积:S=2πrl

全面积:S=2πrl+2πr

圆锥侧面积:S=πrl

全面积:S=πrl+πr

球的表面积:S=4πr

柱体体积:V=Sh

椎体体积:V=(1/3)Sh

球体体积:V=(4/3)πr

直线斜率:k=(y2-y1)/(x2-x1)

直线平行:l1∥l2→k1=k2

前提:斜率存在,l1,l2不重合

A1B2-A2B1=0且B1C2-B2C1≠0,L1∥L2

直线垂直:l1⊥l2→k1×k2=-1

前提:斜率存在

A1A2+B1B2=0

L1⊥L2

点斜式:y-y1=k(x-x1)

前提:不垂直于x轴

斜截式:y=kx+b

前提:不垂直于x轴

两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

前提:不垂直于x轴和y轴

截距式:x/a+y/b=1

前提:不垂直于x轴和y轴且不过原点

一般式:Ax+By+C=0(A+B≠0)

任何位置的直线

两点间距离:d=根号下(x2-x1)+(y2-y1)

点到直线距离:d=AX0+BY0+C的绝对值/根号下A+B

圆的一般方程:x+y+Dx+Ey+F=0(D+E-4F>0)

圆心(-D/2,-E/2)半径:根号下(D+E-4F)/4

必修四

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π/2-a)=cos(a)

cos(π/2-a)=sin(a)

sin(π/2+a)=cos(a)

cos(π/2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

两角和与差的三角函数

sin(a+b)=sinacosb+cosαsinb

cos(a+b)=coscosb-sinasinb

sin(a-b)=sinacosb-cosasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tana×tanb)

tan(a-b)=(tana-tanb)/(1+tana×tanb)

二倍角公式

sin(2a)=2sin(a)cos(a)

cos2a=cosa-sina

tan2a=(2tana)/(1-tana)

半角公式

sin(a/2)=±根号下(1-cosa/2

cos(a/2)=±根号下(1+cosa)/2

tan(a/2)=±根号下(1-cosa)/(1+sina)=sina/(1+cosa)=(1-cosa)/sina

同角三角函数的基本关系

sinα+cosα=1

sinα/cosα=tanα

tanα×cotα=1

弧长公式:l=α的绝对值×r

扇形面积:S=1/2lr=1/2α的绝对值×r

高一数学必修2公式总结

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于k·π/2±α(k∈Z)的个三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

以上就是数学必修二公式的全部内容,8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。

猜你喜欢