数学必修二公式?- 两面角和立体角 - 方块, 长方体, 平行六面体 - 四面体和其他棱锥 - 棱柱 - 八面体, 十二面体, 二十面体 - 圆锥,圆柱 - 球 - 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面 公理 立体几何中有4个公理:公理1 如果一条直线上的两点在一个平面内,那么,数学必修二公式?一起来了解一下吧。
学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是我为大家整理的高一数学必修2公式总结,希望对大家有所帮助!
高一数学必修2公式汇总:立体几何基本课题包括:
- 面和线的重合
- 两面角和立体角
- 方块, 长方体, 平行六面体
- 四面体和其他棱锥
- 棱柱
- 八面体, 十二面体, 二十面体
- 圆锥,圆柱
- 球
- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面
公理
立体几何中有4个公理:
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 平行于同一条直线的两条直线平行.
立方图形
立体几何公式
名称 符号 面积S 体积V
正方体 a——边长 S=6a^2 V=a^3
长方体 a——长 S=2(ab+ac+bc) V=abc
b——宽
c——高
棱柱 S——底面积 V=Sh
h——高
棱锥 S——底面积 V=Sh/3
h——高
棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3
h——高
拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱 r——底半径 C=2πr V=S底h=∏rh
h——高
C——底面周长
S底——底面积 S底=πR^2
S侧——侧面积 S侧=Ch
S表——表面积 S表=Ch+2S底
S底=πr^2
空心圆柱 R——外圆半径
r——内圆半径
h——高 V=πh(R^2-r^2)
直圆锥 r——底半径
h——高 V=πr^2h/3
圆台 r——上底半径
R——下底半径
h——高 V=πh(R^2+Rr+r^2)/3
球 r——半径
d——直径 V=4/3πr^3=πd^2/6
球缺 h——球缺高
r——球半径
a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3
球台 r1和r2——球台上、下底半径
h——高 V=πh[3(r12+r22)+h2]/6
圆环体 R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4
桶状体 D——桶腹直径
d——桶底直径
h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)
平面解析几何包含一下几部分:
一 直角坐标
1.1 有向线段
1.2 直线上的点的直角坐标
1.3 几个基本公式
1.4 平面上的点的直角坐标
1.5 射影的基本原理
1.6 几个基本公式
二 曲线与议程
2.1 曲线的直解坐标方程的定义
2.2 已各曲线,求它的方程
2.3 已知曲线的方程,描绘曲线
2.4 曲线的交点
三 直线
3.1 直线的倾斜角和斜率
3.2 直线的方程
Y=kx+b
3.3 直线到点的有向距离
3.4 二元一次不等式表示的平面区域
3.5 两条直线的相关位置
3.6 二元二方程表示两条直线的条件
3.7 三条直线的相关位置
3.8 直线系
四 圆
4.1 圆的定义
4.2 圆的方程
4.3 点和圆的相关位置
4.4 圆的切线
4.5 点关于圆的切点弦与极线
4.6 共轴圆系
4.7 平面上的反演变换
五 椭圆
5.1 椭圆的定义
5.2 用平面截直圆锥面可以得到椭圆
5.3 椭圆的标准方程
5.4 椭圆的基本性质及有关概念
5.5 点和椭圆的相关位置
5.6 椭圆的切线与法线
5.7 点关于椭圆的切点弦与极线
5.8 椭圆的面积
六 双曲线
6.1 双曲线的定义
6.2 用平面截直圆锥面可以得到双曲线
6.3 双曲线的标准方程
6.4 双曲线的基本性质及有关概念
6.5 等轴双曲线
6.6 共轭双曲线
6.7 点和双曲线的相关位置
6.8 双曲线的切线与法线
6.9 点关于双曲线的切点弦与极线
七 抛物线
7.1 抛物线的定义
7.2 用平面截直圆锥面可以得到抛物线
7.3 抛物线的标准方程
7.4 抛物线的基本性质及有关概念
7.5 点和抛物线的相关位置
7.6 抛物线的切线与法线
7.7 点关于抛物线的切点弦与极线
7.8 抛物线弓形的面积
八 坐标变换·二次曲线的一般理论
8.1 坐标变换的概念
8.2 坐标轴的平移
8.3 利用平移化简曲线方程
8.4 圆锥曲线的更一般的标准方程
8.5 坐标轴的旋转
8.6 坐标变换的一般公式
8.7 曲线的分类
8.8 二次曲线在直角坐标变换下的不变量
8.9 二元二次方程的曲线
8.10 二次曲线方程的化简
8.11 确定一条二次曲线的条件
8.12 二次曲线系
九 参数方程
十 极坐标
一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t 7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
点斜式
Y-Y1=K(X-X1)
斜截式
Y=KX+B
两点式
(Y-Y1)/(Y2-Y1)=(X-X1)/(X2-X1)
截距式
X/A+Y/B=1
一般式
AX+BY+C=0
两点间的距离公式:A(X1,Y1)
B(X2,Y2)
|AB|=((X1-X2)平方+(Y1-Y2)平方)开根号
必修二
直棱柱侧面积:S=ch
c是底面周长,h是高
棱锥侧面积:S=1/2ch'
c是底面周长,h'是斜高
正棱台侧面积:S=(1/2)(c+c')h'
c、c'分别是上、下底面周长,h'是斜高
圆柱侧面积:S=2πrl
全面积:S=2πrl+2πr
圆锥侧面积:S=πrl
全面积:S=πrl+πr
球的表面积:S=4πr
柱体体积:V=Sh
椎体体积:V=(1/3)Sh
球体体积:V=(4/3)πr
直线斜率:k=(y2-y1)/(x2-x1)
直线平行:l1∥l2→k1=k2
前提:斜率存在,l1,l2不重合
A1B2-A2B1=0且B1C2-B2C1≠0,L1∥L2
直线垂直:l1⊥l2→k1×k2=-1
前提:斜率存在
A1A2+B1B2=0
L1⊥L2
点斜式:y-y1=k(x-x1)
前提:不垂直于x轴
斜截式:y=kx+b
前提:不垂直于x轴
两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
前提:不垂直于x轴和y轴
截距式:x/a+y/b=1
前提:不垂直于x轴和y轴且不过原点
一般式:Ax+By+C=0(A+B≠0)
任何位置的直线
两点间距离:d=根号下(x2-x1)+(y2-y1)
点到直线距离:d=AX0+BY0+C的绝对值/根号下A+B
圆的一般方程:x+y+Dx+Ey+F=0(D+E-4F>0)
圆心(-D/2,-E/2)半径:根号下(D+E-4F)/4
必修四
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π/2-a)=cos(a)
cos(π/2-a)=sin(a)
sin(π/2+a)=cos(a)
cos(π/2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
两角和与差的三角函数
sin(a+b)=sinacosb+cosαsinb
cos(a+b)=coscosb-sinasinb
sin(a-b)=sinacosb-cosasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tana×tanb)
tan(a-b)=(tana-tanb)/(1+tana×tanb)
二倍角公式
sin(2a)=2sin(a)cos(a)
cos2a=cosa-sina
tan2a=(2tana)/(1-tana)
半角公式
sin(a/2)=±根号下(1-cosa/2
cos(a/2)=±根号下(1+cosa)/2
tan(a/2)=±根号下(1-cosa)/(1+sina)=sina/(1+cosa)=(1-cosa)/sina
同角三角函数的基本关系
sinα+cosα=1
sinα/cosα=tanα
tanα×cotα=1
弧长公式:l=α的绝对值×r
扇形面积:S=1/2lr=1/2α的绝对值×r
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
以上就是数学必修二公式的全部内容,8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。