九年级上册数学期中考试卷?我现在对如何备战初三数学期中考试谈一下我的看法,希望能对同学们有所帮助。 首先同学们要赶快走出上次月考成功的喜悦与失败的阴影,初三考的不仅仅是你的学习,而且需要过硬的心态,不能被一时的成功冲昏头脑,更不能因一时的失败而丧失信心。那么,九年级上册数学期中考试卷?一起来了解一下吧。
作OH垂直于AB
OA=OB
所以△OAB为等腰三角形,
∵∠AOB=120°
所以∠A=30°
因为OA=20
所以OH=10
AH=10根号3
同理HB=10根号3
S△AOB= ABXOH/2= 100根号3 cm^2
第一学期九年级期中考试数学试题
一、选择题(每小题3分,共36分)
1.下列图形中,既是轴对称图形,又是中心对称图形的是()
A. , B. , C. , D.
2.下列命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④两条对角线互相垂直且平分的四边形是菱形.其中错误命题的个数是
A.1 B.2 C.3 D.4
3.(2013•雅安)已知x1,x2是一元二次方程x2-2x=0的两根,则x1+x2的值是()
A.0,B.2, C.-2,D.4
4.(2013•益阳)抛物线y=2(x-3)2+1的顶点坐标是()
A.(3,1), B.(3,-1), C.(-3,1), D.(-3,-1)
5.为了改善居民住房条件,我市计划用未来两年的时间将城镇居民的住房面积由现在的人均约为l0m2提高到12.1m2,若每年的年增长率相同,则年增长率为
A.9% B.10% C.11% D.12%
6.正方形ABCD在坐标系中的位置如下图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为
A.(一2,2) B.(4,1) C.(3,1) D.(4,0)
7.在同一直角坐标系中,函数与 ( ≠0)的图像大致是
8.两圆的半径分别为R和r,圆心距为1,且R、r分别是方程 的两个根,则两圆的位置关系是
A.相交 B.外切 C.内切 D.外离
9.Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆OA,OB外切,那么图中两个扇形(阴影部分)的面积是
A. B. C. D.
10.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“l”,“2”,“3”,“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若两指针指向扇形的分界线,则都重转一次,在该游戏中乙获胜的概率是
A. B. C. D.
11.如下图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是
A.55° B.60° C.65° D.70°
12.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如下图所示,则下列结论正确的是
A.汽车在高速公路上的行驶速度为100km/h
B.乡村公路总长为90km
C.汽车在乡村公路上的行驶速度为60km/h
D.该记者在出发后4.5h到达采访地
二、填空题(每小题3分,共15分)
13.抛物线 与直线 只有一个交点,则实数 的值是_______
14.康康家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为JA0后,对后两位数字意见有分歧,最后决定由毫不知情的康康从如下图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在JA0之后,则选中的车牌号为JA058的概率是__________。
数学题初三上册期中试题,初三数学期中考试试卷上册附答案很多人还不知道,现在让我们一起来看看吧!
一、选择题(本大题共15个小题,每小题3分,共45分)
1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是()
A.2B.-2C.3D.-3
2.一元二次方程x2-4x+5=0的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
3.如果2是方程x2-3x+c=0的一个根,那么c的值是()
A.4B.-4C.2D.-2
4.下列说法中正确的个数是()
①不可能事件发生的概率为0;
②一个对象在试验中出现的次数越多,频率就越大;
③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;
④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.
A.1B.2C.3D.4
5.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()
A.14B.12
C.12或14D.以上都不对
6.下列命题正确的是()
A.对角线互相垂直的四边形是菱形
B.一组对边相等,另一组对边平行的四边形是平行四边形
C.对角线相等的四边形是矩形
D.对角线互相垂直平分且相等的四边形是正方形
7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为()
A.x(x-11)=180B.2x+2(x-11)=180
C.x(x+11)=180D.2x+2(x+11)=180
8.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是()
A.34B.15C.25D.35
9.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是()
A.m≤3B.m<3
C.m<3且m≠2D.m≤3且m≠2
10.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()
A.4B.6C.8D.10
11.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是()
A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢
B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢
C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢
D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢
12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8000元,则售价应定为()
A.60元B.80元
C.60元或80元D.70元
13.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()
A.70°B.75°C.80°D.95°
14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()
A.①②B.②③C.①③D.②④
15.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边形EFGH是菱形,其中正确的个数是()
A.1个B.2个C.3个D.4个
二、填空题(本大题共5小题,每小题5分,共25分)
16.一元二次方程x2+x=0的解是________________.
17.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________.
18.若x1、x2是方程2x2-3x-4=0的两个根,则x1x2+x1+x2的值为________.
19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.
20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.
三、解答题(本大题共7个小题,各题分值见题号后,共80分)
21.(8分)用适当的方法解方程:
(1)x2-4x+3=0;(2)(x-2)(3x-5)=1.
22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.
23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.
24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率为________;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.
25.(12分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.
26.(14分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.
(1)填表(不需化简):
时间,第一个月,第二个月,清仓时
单价(元)80,40
销售量(件)200
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
27.(16分)已知:ABCD的两边AB,AD的长是关于x的方程x2-mx+m2-14=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么ABCD的周长是多少?
参考答案
1.C2.D3.C4.C5.B6.D7.C8.C9.D10.C11.B12.C13.C14.B15.C16.x1=0,x2=-117.518.-1219.2320.22
21.(1)x1=1,x2=3.
(2)x1=11+136,x2=11-136.
22.证明:∵四边形ABCD为矩形,
∴∠A=∠B=90°,AD=BC.
∵∠AOC=∠BOD,
∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.
∴△AOD≌△BOC(AAS).
∴AO=OB.
23.设这个增长率为x.依题意得20(1+x)2-20(1+x)=4.8.
解得x1=0.2,x2=-1.2(不合题意,舍去).0.2=20%.
答:这个增长率是20%.
24.(1)14
(2)画树状图:
由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,
所以他恰好买到雪碧和奶汁的概率为212=16
25.证明:连接MC.
∵在正方形ABCD中,AD=CD,∠ADM=∠CDM,
又∵DM=DM,
∴△ADM≌△CDM.
∴AM=CM.
∵ME∥CD,MF∥BC,
∴四边形CEMF是平行四边形.
又∵∠ECF=90°,
∴CEMF是矩形.
∴EF=MC。
作OD垂直AB于D,∵OA=OB,∴三角形OAB是等腰三角形,∴∠A=(180°-120°)/2=30°,
∴OD=OA/2=10CM,∴AD=10根号3,∴AB=20根号3,∴S=10×20根号3÷2=100根号3
1.下列运算正确的是(▲)
A. B. C. D.
2.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是(▲)
A B CD
3. 如图,数轴上 两点分别对应实数 ,则下列结论正确的是( ▲)
A. B.
C. D.
4.如图所示,正方形ABCD中,点E是CD边上一点,连结AE,交对角线BD于 F,连结CF,则图中全等三角形共有(▲)
A.1对B.2对C.3对 D.4对
5.初三(8)班学生准备利用“五一”假期外出旅游,旅游公司设计了几条线路供学生们选择.班长对全体学生进行民意调查,从而最终决定选择哪一条线路.下列调查数据中最值得关注的是(▲)
A. 平均数 B. 中位数 C.众数 D. 方差
6. 若方程x2-4x-2=0的两实根为x1、x2,则x1 + x2的值为 ( ▲ ) [来源:学科网]
A.-4B.4 C.8 D.6
7. 已知一个凸n边形的内角和等于540°,那么n的值是(▲ )
A.4 B.5 C.6D.7
8.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为(▲)
A.外离B.内切C.相交D.外切
9.将点A(4,0)绕着原点O顺时针方向旋转30°角到对应点A′,则点A′的坐标是(▲)
A.(23,2) B.(4,-2) C.(23,-2)D.(2, -23)
10.如图,直线l是一条河,P、Q两地相距8千米,P、Q两地到l的距离分别为2千米、5千米,欲在l上的某点M处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是(▲)
二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)
11.分解因式: =____▲_ ___ .
12.在函数 中,自变量x的取值范围是 ▲.
13.今年桃花节之前,阳山桃花节组委会共收到约1.2万条楹联应征作品,这个数据用科学记数法可表示为 ▲条.
14.如图,已知AB∥CD, °,则 为 ▲ °
15.若用半径为9,圆心角为 的扇形围成一个圆锥的侧面(接缝忽略不计) ,则这个圆锥的底面半径是▲ ;
16.2011年3月11日,日本发生了9.0级大地震.福岛县某地一水塔发生了严重沉陷(未倾斜).如图,已知地震前,在距该水塔30米的A处测得塔顶B的仰角为60°;地震后,在A处测得塔顶B的仰角为45°,则该水塔沉陷了▲ 米.
17.如图,点A在双曲线 上,点B在双曲线 上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为▲。
以上就是九年级上册数学期中考试卷的全部内容,23.如下图,用长为39米的篱笆(虚线部分),一面靠墙围成矩形ABCD菜园(AB