当前位置: 首页 > 所有学科 > 数学

数学一元二次方程,一元二次方程一般解法

  • 数学
  • 2024-06-25

数学一元二次方程?首先当a不等于0时方程:ax^2+bx+c=0才是一元二次方程。1、公式法:Δ=b²-4ac,Δ<0时方程无解,Δ≥0时。x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个)2、那么,数学一元二次方程?一起来了解一下吧。

数学一元二次方程难题

你好呀!解一元二次方程组的方法主要有两种,分别是代入法和消元法。代入法是将其中一个方程中的一个变量用另一个方程中的变量表示,然后代入到另一个方程中求解。这样可以将方程组化简为一个一元二次方程,然后求解这个一元二次方程即可。消元法是通过适当的运算将方程组中的某个变量消去,得到一个只含有一个变量的方程,然后求解这个一元二次方程。

扩展补充:

除了代入法和消元法之外,还可以使用图像法。将两个二次方程的图像画在同一个坐标系上,方程组的解就是两个二次曲线的交点。

此外,对于一元二次方程组,还可以使用矩阵和行列式的方法进行求解。将方程组写成矩阵的形式,然后进行运算,得到方程组的解。

总之,解一元二次方程组有多种方法,选择合适的方法取决于具体的情况和个人的偏好。希望对你有所帮助!

一元二次方程60道计算题

一元二次方程概念通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

拓展知识:

在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。

埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。

公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。在阿拉伯阿尔。花拉子米的《代数学》中讨论到方程的解法,解出了一次、次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。

阿尔花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。

数学一元二次方程50道题

20道一元二次方程带解答过程是如下:

1、2(x-2)-3(4x-1)=9(1-x) 。

2x-4-12x+3=9-9x。

x=-10。

2. 11x+64-2x=100-9x 。

18x=36。

x=2。

3. 15-(8-5x)=7x+(4-3x) 。

15-8+5x=7x+4-3x。

x=-3。

4. 3(x-7)-2[9-4(2-x)]=22 。

3x-21-2(9-8+4x)=22。

3x-21-2-8x=22。

-5x=55。

x=-11。

5. 2(x-2)+2=x+1 。

2x-4+2=x+1。

x=3。

中考经典计算题200道及答案

1、一般形式ax^2+bx+c=0(a不等于0)其中ax^2是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。

使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

2、变形式ax^2+bx=0(a、b是实数,a不等于0),ax^2+c=0(a、c是实数,a不等于0)

3、配方式

4、两根式

扩展资料

一元二次方程的解法:

1、直接开平方法

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。

用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

2、配方法

配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有 。

3、公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

二次函数压轴题精选40道

首先当a不等于0时方程:ax^2+bx+c=0才是一元二次方程

1.公式法:Δ=b²-4ac,Δ<0时方程无解,Δ≥0时

x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个)

2.配方法:可将方程化为[x-(-b/2a)]²=(b²-4ac)/4a²

可解出:x=【-b±根号下(b²-4ac)】÷2a(公式法就是由此得出的)

3.直接开平方法与配方法相似

4.因式分解法:核心当然是因式分解了看一下这个方程

(Ax+C)(Bx+D)=0,展开得ABx²+(AD+BC)+CD=0与一元二次方程ax^2+bx+c=0对比得a=AB,b=AD+BC,c=CD。所谓因式分解也只不过是找到A,B,C,D这四个数而已

举几个例子吧

例1: x²-5x+6=0

解:(x-2)(x-3)=0,x1=2,x2=3

例2: 3x²-17x+10=0

解: (3x-2)(x-5)=0,x1=2/3,x2=5

因式分解法又名十字相乘法原因看下面就知道了

ABx²+(AD+BC)+CD=0 Ax C

↖↗

↙↘

Bx D (A,B,C,D不一定都是正数)

解方程时因选择适当的方法

下面几个练习题可以试试

1.x²-6x+9=0

2.4x²+4x+1=0

3.x²-12x+35=0

4.x²-x-6=0

5.4x²+12x+9=0

6.3x²-13x+12=0

以上就是数学一元二次方程的全部内容,一元二次方程的一般形式为:ax^2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程。 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、因式分解法。 二、。

猜你喜欢