高中数学立体几何解题技巧?高中数学立体几何解题技巧:1、由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路;利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一;三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。2、那么,高中数学立体几何解题技巧?一起来了解一下吧。
立体几何一直是高中数学的一大难点,在已经掌握了平面几何的基础知识后,要进一步学好立体几何的基础知识却并不容易。因为从平面观念过渡到立体观念,对一般学生来说,困难较多。产生困难的原因是立体几何比平面几何研究的基本对象多了个“面”,而这多出的一个“面”,使得在平面几何中点和直线之间的三种位置关系(即点与点、点与直线、直线与直线)拓展为立体几何中点、直线和平面之间的六种位置关系。
在学习立体几何的时候
我认为我们必须从以下6点入手~
1
建立空间观念
提高空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。
请点击输入图片描述
还可以通过画图帮助理解,从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。
2
掌握基础知识和基本技能
直线和平面是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。
例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。
我觉得立体几何的题目类型和解题思路基本上就是那么几种,所以想学好立体几何我的经验是要注重基本的概念和定理!要把直线/面/体等等概念之间的联系和关系弄清楚,然后做一些典型的题目,注意归纳解题方法就差不多了!
我个人感觉,坐标系是立体几何里面一个很有用的工具.很多思路很难想到的题目用坐标系解就很容易(就是算的有点麻烦^).
其实立体几何在高中都是比较简单的!要对自己有信心,千万不要害怕!肯定可以学好的~~~我们以前也是听别人说立体几何有多难多难,就自己吓唬自己,其实到高考的时候发现立体几何还是很简单的~~~只要你知识掌握扎实肯定没有问题!
我想学好立体几何,首先你要有空间感
你可以尝试一下,看一下那些立体几何看一下,他们是怎样立体的。另外,你可以自己画一些立体几何。对于你以后做题会有帮助。
一、空间直角坐标系构建的方法分类
空间直角坐标系的构建的本质是首先在一个平面内寻找一对互相垂直的直线,再寻找垂直于该面的一条直线,最后通过平移的方法,寻找到三条直线的交点,如此以来就可以构建出一组两两垂直的空间直角坐标系。需要注意的是,在构建空间直角坐标系时,一定要遵循右手螺旋定则,否则会引起后面计算的错误,如图所示。
为方便后续讲解,按构建空间直角坐标系的难易程度,j可将高考真题分为了三类。
第一类为低难度类,即题目中已经给出了空间线面垂直和底面线线垂直的关系;第二类为中难度类,即题目中仅给出了空间线面垂直和底面线线垂直中的任意一项的关系,未给出的一项,需要考生自行进行构造;第三类为高难度类,即题目中空间线面垂直和底面线线垂直均未给出,均需要考生自行进行构造。通常情况下第二类和第三类题目中均存在明显的面面垂直关系,有些是题目中已经给出,有些则需要考生自行进行证明。
此外,最难构建空间直角坐标系的题型是题目中给出的几何体不存在面面垂直关系,因此很难确定z轴的方向,该种设置会大大增加立体几何大题的整体难度。该类题型需要考生首先自行构建面面垂直后,随后在垂直于底面的平面中构建垂直于交线的直线,从而得到空间线面垂直关系,即可确定z轴方向。
第一要建立空间观念,提高空间想象力。
从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。
第二要掌握基础知识和基本技能。
要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。
以上就是高中数学立体几何解题技巧的全部内容,3.学会画图:画图是解决立体几何问题的重要手段。在解题过程中,要养成画图的习惯,将题目中的条件和要求用图形表示出来,有助于更好地理解题意和分析问题。4.分类讨论:立体几何题目往往有多种解法,因此在解题过程中要学会分类讨论。对于复杂的题目,可以先将其分解为几个简单的子问题,然后分别求解。