三大数学危机?数学史上三大危机是:1、希伯斯发现了一个腰为1的等腰直角三角形的斜边永远无法用较简整数比来表示,从而发现了一个无理数,推翻了毕达哥拉斯的著名理论。2、微积分的合理遭到严重质疑,险些要把整个微积分理论推翻。3、罗素悖论不像较大序数悖论或较大基数悖论那样涉及高深知识,它很简单,那么,三大数学危机?一起来了解一下吧。
数学史上三大危机是:
1、希伯斯发现了一个腰为1的等腰直角三角形的斜边永远无法用较简整数比来表示,从而发现了一个无理数,推翻了毕达哥拉斯的著名理论。
2、微积分的合理遭到严重质疑,险些要把整个微积分理论推翻。
3、罗素悖论不像较大序数悖论或较大基数悖论那样涉及高深知识,它很简单,却可以轻松摧毁理论。
数学的三大危机分别为:
第一次危机:无穷概念及其应用带来的困惑与矛盾;第二次危机:关于微积分的一致性根基遭受质疑的问题;第三次危机:在逻辑和数学的公理及体系上出现不合理解之处引发的争议。接下来我将分别展开介绍这三次危机及其影响。
一、无穷概念的引入是第一次危机的根源。在数学的发展过程中,无穷这一概念的应用非常广泛,但也带来了许多困惑和矛盾。例如,无穷大与无穷小的概念及其运算性质,在当时的数学体系中引发了一系列的问题和争议。这种危机推动了数学家们对无穷理论的研究,逐渐形成了实数理论的基础,为现代数学的严谨发展铺平了道路。第二次危机涉及微积分领域的问题,在微积分诞生的初期阶段中发现了与直观不符的结果和争议性问题,尤其是极限论的表述不清晰导致了一系列关于微积分的一致性问题。这场危机促使数学家们重新审视微积分的基础,最终通过更严谨的数学语言和方法重新定义了微积分的基础概念和方法论。第三次危机发生在数学的公理和体系上出现了不合逻辑之处,导致了整个数学体系可能遭受威胁和争议的局面。如罗素悖论和希布赛可尔反例等的出现都是这场危机的直接表现。此次危机推动了对数学基础的深入反思与逻辑清理,引发了一场数学的公理化和严格逻辑验证的热潮。
数学的三大危机如下:
无理数的发现,第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。第三次数学危机数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
一、希伯斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。
解决:
1、伯内特解释了芝诺的“二分法”:即不可能在有限的时间内通过无限多个点,在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷。
亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触,须知长度和时间被说成是“无限的”有两种涵义。
一般地说,一切连续事物被说成是“无限的”都有两种涵义:或分起来的无限,或延伸上的无限。
因此,一方面,事物在有限的时间里不能和数量上无限的事物相接触。
另一方面,却能和分起来无限的事物相接触,因为时间本身分起来也是无限的。
因此,通过一个无限的事物是在无限的时间里而不是在有限的时间里进行的,和无限的事物接触是在无限数的而不是在有限数的范围上进行的。
2、亚里士多德指出这个论证和前面的二分法是一回事,这个论证得到的结论是:跑得慢的人不可能被赶上。
数学三大危机是达哥拉斯悖论、贝克莱悖论和罗素悖论。
1、第一次数学危机:毕达哥拉斯悖论
毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理,也就是我们所说的勾股定理。勾股定理指出直角三角形三边应有如下关系,即a^2=b^2+c^2,a和b分别代表直角三角形的两条直角边,c表示斜边。
然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。他发现等腰直角三角形两直角边为1时,斜边永远无法用最简整数比(有理数)来表示,从而发现了第一个无理数,希伯斯推翻了毕达哥拉斯的着名理论。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。
第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。
2、第二次数学危机:贝克莱悖论
十七世纪后期,牛顿和莱布尼兹创立了微积分,在实践中取得了巨大成功。然而,微积分学产生伊始,迎来的并非全是掌声,在当时它还遭到了许多人的强烈攻击和指责,原因在于当时的微积分主要建立在无穷小分析之上,而无穷小后来证明是包含逻辑矛盾的。因而,从微积分诞生时就遭到了一些人的反对与攻击。
以上就是三大数学危机的全部内容,数学三大危机具体指关于无理数的发现、关于无穷小的问题、关于集合论的悖论。1、第一大危机是关于无理数的发现。在古希腊时期,人们认为所有的数都可以用有理数来表示,即所有的数都可以表示为两个整数之比。这种观念在公元前5世纪被打破。希帕索斯发现了一个既不是整数也不是两个整数之比的问题。