数学黑洞6174?之所以说“6174”是“数学黑洞”,是因为无论你怎么换那4个数字,只要不是完全重复,最后都逃脱不了“6174”的魔掌。而这个“最大减最小”的动作,最多不会超过7次!这又加深了“6174”的神秘性。那么,数学黑洞6174?一起来了解一下吧。
茫茫宇宙之中,存在着一种极其神秘的天体“黑洞”。黑洞的密度极大,引力极强,任何物质经过它的附近,都会被它吸进去,再也不能出来,光线也不例外,因此黑洞是一个不发光的天体。无独有偶,在数学中也有这种神秘的“黑洞”现象,对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去,就像宇宙中的黑洞一样。
数学对于普通人的意义
数字黑洞:6174 未解之谜
任意选一个四位数(数字不能全相同),把所有数字从大到小排列,再把所有数字从小到大排列,用前者减去后者得到一个新的数。重复对新得到的数进行上述操作,7 步以内必然唯贺会得到 6174。
解析神秘数学黑洞"6174"
或许你早就听过这个故事:有一个神秘的数学黑洞,叫做“6174”。只要你任选4个不完全相同的数字(像1111就不行),让“最大排列”减“最小排列”(例如4321-1234),不断重复这个动作,最后一定会得到相同的结果:6174。
之所以说“6174”是“数学黑洞”,是因为无论你怎么换那4个数字,只要不是完全重复,最后都逃脱不了“6174”的魔掌。
6174数学黑洞即卡普雷卡尔(Kaprekar)常数,它的算法如下:
取任意一个4位数(4个数字均为同一个数的,以及三个数字相同,另外一个数与这个数相差1,如1112,,6566等除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞6174,到达这个黑洞最多需要14个步骤。
扩展资和档磨料
其它黑洞
1、123黑洞(即西西弗斯串)
取任意一个数字,数出它的偶数个数、奇数个数及总的位数。例如1234567890,其偶数个数总共5个,奇数个数也为5个,数字总数为10个。按“偶―奇―总”的位序排列,得到新数为:5510。重复上述步骤,得到t34;再重复,得到123。
可以用计算机编程测试,任意一个数按上述算法经有限次重复后都会得到123。换言之,任何数的最终结果都无法逃逸123黑洞。
2、自恋性数字黑洞
当一个n位数的所有数位上数字的n次方和等于这个数本身,这个数就叫自恋数。显然1,2,3,…,9是自恋数。三位数中的自恋数有四个:153,370,371和407(这四个数被称为“蠢竖水仙花数”)。
数字黑洞是指自银漏银然经过某种数学运算后,陷锋宴入一种循环的状况。例如,任选四个不同的数字,组成一个最大的数和一个最小的数,用搜岁最大的数减去最小的数,得到一个新的四位数,再用这个新的四位数,中的四个数字重复上述过程,最多7步,结果总是6174,仿佛掉进了黑洞,永远出不来。不心的话,你可以试一试
program p1;
var
a:array[1..4] of integer;{读扒基尺入一个春高数组,如4 5 6 7}
i,j,x,y:integer;
begin
for i:=1 to 4 do
readln(a[i]);
y:=0;
while (a[1]<>6)and(a[2]<>1)and(a[3]<>7)and(a[4]<>4) do
begin
for i:=1 to 3 do
begin