目录人教版八年级上册数学同步练习册每日一练用哪个好 沪科版 初中数学 同步练习 八年级上册的答案 八年级上册数学同步练习答案 同步练习册 八年级上册 数学 答案 求解 人教版八年级上册数学配套练习册答案!
1.1】
1.∠4,∠4,∠2,∠52.2,1,3,BC3.C
4.∠2与∠3相等,∠3与∠5互补.理由略
5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED
6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与
∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与
∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D
与∠DCB
【1.2(1)】
1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略
3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行
5.a与b平行.理由略
6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得
∠ADG=
1
2
∠ADE,∠ABF=
1
2
∠ABC,则∠ADG=∠ABF,所以由同
位角相等,两直线平行,得DG∥BF
【1.2(2)】
1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行
2.D
3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行
(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行
4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.
所以∠DEC+∠ABC=180°,AB∥DE (同旁内角互补,两直线平行)
5.(1)180°;AD;BC
(2)AB与CD 不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°
等都可说明AB∥CD
6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略
【1.3(1)】
1.D2.∠1=70°,∠2=70°,∠3=110°
3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),
∴∠3=∠4(两直线平行,同位角相等)
4.垂直的意义;已知;两直线平行,同位角相等;30
5.β=44°.∵AB∥CD,∴α=β
6.(1)∠B=裂历∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°
【1.3(耐源镇2)】
1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等
2.(1)×(2)×3.(1)DAB(2)BCD
4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).
∴∠4=∠3=120°(两直线平行,同位角相等)
5.能.举例略
6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.
义务教育课程标准实验教材作业本
数学 八 年 级 上
50
∴∠PAB+∠PCD=180°-∠CAP-∠ACP.
又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD
【1.4】
1.2
2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约
为120m
3.1�5cm4.略
5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.
∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,
∴AE=CF
6.AB=BC.理由如下:作AM⊥l2
于 M,BN⊥l
3
于 N,则△ABM≌
△BCN,得AB=BC
复习题
1.502.(1)∠4(2)∠3(3)∠1
3.(1)∠B,两直线平行,同位角相等
(2)∠5,内错角相等,两直线平行
(第5题)
(3)∠BCD,CD,同旁内角互补,两直线平行
4.(1)90°(2)60°
5.AB∥CD.理由:如图,由∠1+∠3=180°,得
∠3=72°=∠2
6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠昌粗B=180°.
∴∠B=65°
7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D
8.不正确,画图略
9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°
10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D
(2)由B′E∥DC,得∠BEB′=∠C=130°.
∴∠AEB′=∠AEB=
1
2
∠BEB′=65°
第2章特殊三角形
【2.1】
1.B
2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC
3.15cm,15cm,5cm4.16或17
(第5题)
5.如图,答案不唯一,图中点C1
,C
2
,C
3
均可
6.(1)略(2)CF=1�5cm
7.AP平分∠BAC.理由如下:由AP是中线,得BP=
PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).
∴∠BAP=∠CAP
【2.2】
1.(1)70°,70°(2)100°,40°2.3,90°,50°3.略
4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50°5.40°或70°
6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.
又∵∠BDC=∠CEB=90°,BC=CB,
∴△BDC≌△CEB(AAS).∴BD=CE
(本题也可用面积法求解)
【2.3】
1.70°,等腰2.33.70°或40°
4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平
参考答案
51
分线,得∠DBC=∠DCB.则DB=DC
5.∠DBE=∠DEB,DE=DB=5
6.△DBF和△EFC都是等腰三角形.理由如下:
∵△ADE和△FDE重合,∴∠ADE=∠FDE.
∵DE∥BC,∴∠ADE=∠B,∠FDE=∠DFB,
∴∠B=∠DFB.∴DB=DF,即△DBF是等腰三角形.
同理可知△EFC是等腰三角形
7.(1)把120°分成20°和100°(2)把60°分成20°和40°
【2.4】
1.(1)3(2)5
2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,
∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°
3.略
4.(1)AB∥CD.因为∠BAC=∠ACD=60°
(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC
5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=
AP,∴∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.
∴∠BAC=120°
6.△DEF是等边三角形.理由如下:由∠ABE+∠FCB=∠ABC=60°,
∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴∠DFE=60°.同理可
得∠EDF=60°,∴△DEF是等边三角形
7.解答不唯一,如图
(第7题)
【2.5(1)】
1.C2.45°,45°,63.5
4.∵∠B+∠C=90°,∴△ABC是直角三角形
5.由已知可求得∠C=72°,∠DBC=18°
6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,
∴DE=DF.∠ECD=45°,∴∠EDC=45°.同理,∠CDF=45°,
∴∠EDF=90°,即DE⊥DF
【2.5(2)】
1.D2.33°3.∠A=65°,∠B=25°4.DE=DF=3m
5.由BE=
1
2
AC,DE=
1
2
AC,得BE=DE6.135m
【2.6(1)】
1.(1)5(2)12(3)槡52.A=225
3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cm
4. 槡22cm(或槡8cm)5.169cm
2
6.18米
7.S梯形BCC′D′=
1
2
(C′D′+BC)�6�1BD′=
1
2
(a+b)2,
S梯形BCC′D′=S
△AC′D′+S
△ACC′+S
△ABC=ab+
1
2
c
2
.
由
1
2
(a+b)2
=ab+
1
2
c
2,得a2
+b
2
=c
2
【2.6(2)】
1.(1)不能(2)能2.是直角三角形,因为满足m
2
=p
2
+n
2
3.符合
4.∠BAC,∠ADB,∠ADC都是直角
5.连结BD,则∠ADB=45°,BD 槡=32.∴BD
2
+CD
2
=BC
2,
义务教育课程标准实验教材作业本
数学 八 年 级 上
52
∴∠BDC=90°.∴∠ADC=135°
6.(1)n
2
-1,2n,n
2
+1
(2)是直角三角形,因为(n2
-1)
2
+(2n)
2
=(n
2
+1)
2
【2.7】
1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略
3.全等,依据是“HL”
4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.
∴∠AEC=90°,即△AEC是等腰直角三角形
5.∵∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,
∴Rt△ABD≌Rt△BAC(HL).∴∠CAB=∠DBA,
∴OA=OB
6.DF⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,
∴∠B=∠D,从而∠D+∠C=∠B+∠C=90°
复习题
1.A2.D3.224.13或 槡1195.B6.等腰
7.72°,72°,48.槡79.64°
10.∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.
又∵BD=EC,∴△ABD≌△ACE.∴AB=AC
11.4�812.B
13.连结BC.∵AB=AC,∴∠ABC=∠ACB.
又∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD
14.25π
15.连结BC,则Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,从而OB=OC
16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.
可得BE=4cm.在Rt△BED中,42
+CD
2
=(8-CD)
2,解得
CD=3cm
第3章直棱柱
【3.1】
1.直,斜,长方形(或正方形)2.8,12,6,长方形
3.直五棱柱,7,10,34.B
5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形
6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形
状、面积完全相同的长方形
(2)9条棱,总长度为(6a+3b)cm
7. 正多面体 顶点数(V) 面数(F) 棱数(E) V+F-E
正四面体4462
正六面体86122
正八面体68122
正十二面体2012302
正二十面体1220302
符合欧拉公式
【3.2】
(第6题)
1.C2.直四棱柱3.6,7
4.(1)2条(2)槡55.C
6.表面展开图如图.它的侧面积是
(1�5+2+2.5)×3=18(cm2);
它的表面积是
18+
1
2
×1�5×2×2=21(cm
2)
【3.3】
1.②,③,④,①2.C
参考答案
53
3.圆柱圆锥球
从正面看 长方形三角形圆
从侧面看 长方形三角形圆
从上面看圆圆和圆心圆
4.B5.示意图如图6.示意图如图
(第5题)
(第6题)
【3.4】
1.立方体、球等2.直三棱柱3.D
4.长方体.1�5×3×0�5×3×4=27(cm
2)5.如图
(第5题)
(第6题)
6.这样的几何体有3种可能.左视图如图
复习题
1.C2.15,5,103.直三棱柱
(第7题)
4.b5.B6.B7.示意图如图
8.D9.(1)面F(2)面C(3)面A
10.蓝,黄
11.如图
(第11题)
第4章样本与数据分析初步
【4.1】
1.抽样调查2.D3.B
4.(1)抽样调查(2)普查(3)抽样调查
5.不合理,可从不同班级中抽取一定数量的男女生来调查
6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取
40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的
问题可以是平均每天上网的时间、内容等
【4.2】
1.22.2,不正确,因为样本容量太小3.C
4.120千瓦�6�1时5.8�625题
6.小王得分
70×5+50×3+80×2
10
=66(分).同理,小孙得74�5分,小李得
65分.小孙得分最高
【4.3】
1.5,42.B3.C4.中位数是2,众数是1和2
义务教育课程标准实验教材作业本
数学 八 年 级 上
54
5.(1)平均身高为161cm
(2)这10位女生的身高的中位数、众数分别是161�5cm,162cm
(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来
作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的
女生,直至挑选到40人为止
6.(1)甲:平均数为9�6年,众数为8年,中位数为8�5年;乙:平均数为9�4
年,众数为4年,中位数为8年
(2)甲公司运用了众数,乙公司运用了中位数
(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为
它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定
【4.4】
1.C2.B3.24.S
2
=25.D
6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给
出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;
②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩
差距较小;④从优秀率看,甲组优秀生比乙组优秀生多
7.(1)
平均数中位数众数标准差
2004年(万元)5�12�62�68.3
2006年(万元)6�53�03�011.3
(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道
理即可).如从平均数、中位数、众数角度看,2006年居民家庭收入比
2004年有较大幅度提高,但差距拉大
【4.5】
1.方差或标准差2.4003.(1)1�8千克(2)27000元
4.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差
1�2(平方环).八年级二班投中环数的同学的投飞标技术比较稳定
5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组
成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有
26人,故甲组总体成绩较好;从方差看,可求得S
2
甲=172(平方分),S
2
乙=
256(平方分).S
2
甲<S
2
乙,甲组成绩比较稳定(波动较小);从高分看,高于
80分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因
此,乙组成绩中高分居多.从这一角度看,乙组成绩更好
6.(1)x甲=15(cm),S
2
甲=
2
3
(cm2);x
乙=15(cm),S
2
乙=
35
3
(cm2).
S
2
甲<S
2
乙,甲段台阶相对较平稳,走起来舒服一些
(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、
舒服
7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实
际水平,用1700元或1600元表示更合适
复习题
1.抽样,普查2.方案④比较合理,因选取的样本具有代表性
3.平均数为14�4岁,中位数和众数都是14岁4.槡2
5.2�86.D7.A8.A9.10,3
10.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常
值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中
上水平,要看他的成绩是否大于中位数
11.(1)三人的加权平均分为甲
295
20
分;乙
318
20
分;丙
307
20
分,所以应录用乙
(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识
和工作经验
12.(1)表中甲的中位数是7�5,乙的平均数、中位数、投中9个以上次数分
别是7,7,0
(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出
参考答案
55
甲的成绩较好,且甲的成绩呈上升的趋势
(3)答案不唯一,只要分析有道理即可
第5章一元一次不等式
【5.1】
1.(1)>(2)>(3)<(4)<(5)≥
2.(1)x+2>0(2)x
2
-7<5(3)5+x≤3x(4)m
2
+n
2
≥2mn
3.(1)<(2)>(3)<(4)>(5)>
4.
(第4题)
5.C
6.(1)80+16x<54+20x
(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;
当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明
【5.2】
1.(1)�(2)×(3)�(4)×(5)�
2.(1)≥(2)≥(3)≤(4)≥(5)≤(6)≥
3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3
(3)x≥2,不等式的基本性质2(4)y<-
1
3
,不等式的基本性质3
4.-
4
5
x+3>-
4
5
y+35.a≥2
6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则
4
5
×0�6y≤0�6x<0�6y,∴
4
5
y≤x<y
【5.3(1)】
1.①⑥2.C
3.(1)x>3(2)x<-3(3)无数;如x=9,x 槡=3,x=-
3
8
等
(4)x≥ 槡-2
4.(1)x≥1(2)x<45.x>2.最小整数解为3
6.共3组:0,1,2;1,2,3;2,3,47.a<-
3
2
【5.3(2)】
1.(1)x≤0(2)x<
4
3
(3)x<3
2.(1)x>2(2)x<-73.(1)x≤5(2)x<-
3
5
4.解不等式得x<
7
2
.非负整数解为0,1,2,3
5.(1)x<
16
5
(2)x<-1
6.(1)买普通门票需540元,买团体票需480元,买团体票便宜
(2)设x人时买团体票便宜,则30x>30×20×0�8,解得x>16.所以17
人以上买团体票更便宜
【5.3(3)】
1.B2.设能买x支钢笔,则5x≤324,解得x≤64
4
5
.所以最多能买64支
3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以30
座的客车至多租6辆
4.设加工服装x套,则200+5x≥1200,解得x≥200.所以小红每月至少加
工服装200套
5.设小颖家这个月用水量为x (m
3),则5×1�5+2(x-5)≥15,解得x≥
义务教育课程标准实验教材作业本
数学 八 年 级 上
56
8�75.至少为8�75m
3
6.(1)
140-11x
9
(2)设甲厂每天处理垃圾x时,则550x+495×
140-11x
9
≤7370,解得x
≥6.甲厂每天至少处理垃圾6时
7.(1)设购买钢笔x (x>30)支时按乙种方式付款便宜,则
30×45+6(x-30)>(30×45+6x)×0�9,解得x>75
(2)全部按甲种方式需:30×45+6×10=1410(元);全部按乙种方式
需:(30×45+6×40)×0�9=1431(元);先按甲种方式买30台计算
器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30×45+6
×10×0�9=1404(元).这种付款方案最省钱
【5.4(1)】
1.B2.(1)x>0(2)x<
1
3
(3)-2≤x<槡3(4)无解
3.(1)1≤x<4(2)x>-14.无解5.C
6.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤
10.在9千米到10千米之间,不包含9千米,包含10千米
7.(1)-3<a≤-1(2)4
【5.4(2)】
1.
3x-2>0,
1
2
(3x-2)×4≤
烅
烄
烆
20
,解得
2
3
<x≤42.24或35
3.设小明答对了x题,则81≤4x≤85,解得20
1
4
≤x≤21
1
4
.所以小明答
对了21题
4.设电脑的售价定为x元,则
x-3000>10%x,
x-3000≤20%x{
,
解得3333
1
3
<x≤
3750.所以商店应确定电脑售价在3334至3750元之间
5.设该班在这次活动中计划分x 组,则
3x+10≥5(x-1),
3x+10≤5(x-1)+1{
,
解得
7≤x≤7.5.即计划分7个组,该班共有学生31人
6.设购买A型x台,B型(10-x)台,则100≤12x+10(10-x)≤105,解得
0≤x≤2�5.x可取0,1,2,有三种购买方案:①购A型0台,B型10台;
②购A型1台,B型9台;③购A型2台,B型8台
7.(1)x>2或x<-2(2)-2≤x≤0
复习题
1.x<
1
2
2.7cm<x<13cm3.x≥24.82
5.x=1,2,3,46.0,1
7.(1)3x-2<-1(2)y+
1
2
x≤0(3)2x>-x
2
8.(1)x>
7
2
(2)x≥
1
11
9.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥3
11.-2<x<1
12.设小林家每月“峰电”用电量为x千瓦时,则0�56x+0�28(140-x)≤
0�53×140,解得x≤125.即当“峰电”用电量不超过125千瓦时使用“峰
谷电”比较合算
13.m≥2
14.设这个班有x名学生,则x-
1
2
x+
1
4
x+
1
7
()x <6,解得x<56.
∵x是2,4,7的倍数,∴x=28.即这个班共有28名学生
15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得
9x+4(50-x)≤360,
3x+10(50-x)≤290{
,
解得30≤x≤32,即甲种鱼苗的投放量应控制在
30吨到32吨之间(包含30吨与32吨)
参考答案
57
第6章图形与坐标
【6.1】
1.C2.(3,3)
3.(1)东(北),350(350),北(东),350(350)(2)495
4.A(2,1),C(4,0),D(4,3)
5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,
3,4,5
(2)略
6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),
(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高
气温是18℃
1.1】 1.∠和友告4,∠4,∠2,∠52.2,1,3,BC3.C 4.∠2与∠3相等,∠3与∠5互补唤明.理由略 5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED 6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与 ∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与告知∠GAD,∠D与 ∠DCF。
虽然有的题目比较费时间,但是也只能 这样神旁来提高自己的学习水平,多和老师交流,孝埋在网上是问不到答案的哈
老师是很乐意学生去问问题的,问多了 老师也会给巧瞎蚂很多学习上的建议
§11.1全等三角形
一、1. C 2. C
二、1.(1)①ABDE②ACDC③BCEC
(2)①∠A∠D ②∠B ∠E ③∠ACB ∠DCE
2. 1204
三、1.对应角分别是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.
对应边分别是:AO和DO,OB和OC,AC和DB.
2.相等,理由如下:
∵△ABC≌△DFE∴BC=FE∴BC-EC=FE-EC ∴BE=FC
3.相等,理由如下:∵△ABC≌△AEF∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠基行FAE —∠BAF 即∠CAF=∠EAB
§11.2全等三角形的判定(一)
一、1. 100 2. △BAD,三边对应相等的两个三角形全等(SSS)
3. 2, △ADB≌△DAC,△ABC≌△DCB 4.24
二、1. ∵BG=CE∴BE=CG 在△ABE和△DCG中,
∴△ABE≌△DCG(SSS),∴∠B=∠C
2. ∵D是BC中点,∴BD=CD,在△ABD和△ACD中,
∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC
又∵∠ADB+∠ADC=180°∴∠ADB=90°∴AD⊥BC
3.提示:证△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2
可得∠ACE=∠FDB
§11.2全等三角形的判定(二)
一、1.D2.C
二、1.OB=OC 2.95
三、1. 提示:利用“SAS”证△DAB≌△CBA可得∠DAC=∠DBC.
2. ∵∠1=∠2∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中,
∴△BAC≌△DAE(SAS)∴BC=DE
3.(1)可添加条件为:BC=EF或BE=CF
(2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,
∴△ABC≌△DEF(SAS)
§11.2全等三角形的判定(三)
一、1. C 2. C
二、1.AAS2.(1)SAS (2)ASA 3.(答案不唯一)∠B=∠B1,∠C=∠C1等
三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)
2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF
∴BE+EC=CF+EC∴BC=EF ∴△ABC≌△DEF(ASA)
3. 提示:用“AAS”和“ASA”均可证明.
§11.2全等三角形的判定(四)
一、1.D 2.C
二、1.ADC,HL;CBE SAS2. AB=A'B'(答案不唯一)
3.Rt△ABC,Rt△DCB,AAS,△DOC
三、1.证明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF(HL)
∴∠ACB=∠DBC ∴AC//DB
2.证明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,AD=CE
∴△ADB≌△CEB(AAS)
3.(1)提示利汪吵用“HL”证Rt△ADO≌Rt△AEO,进而得∠1=∠2;
(2)提示利用“AAS”证△ADO≌△AEO,进而得OD=OE.
11.2三角形全等的判定(综合)
一、1.C 2.B 3.D 4.B 5.B
二、1. 80° 2. 2 3. 70° 4. (略)
三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF,
在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF
(2)∵△ABC≌△DEF ∴∠GFC=∠GCF∴GF=GC
2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分别搏陵哗是AB、AC的中点,AB=AC
∴AD=AE.在△ADC和△AEB中,∴△ADC≌△AEB(SAS)
§11.3角的平分线的性质
一、1.C2.D3.B4.B 5.B6.D
二、1. 5 2. ∠BAC的角平分线 3.4cm
三、1.在A内作公路与铁路所成角的平分线;并在角平分线上按比例尺截取BC=2cm,C点即为所求(图略).
2. 证明:∵D是BC中点,∴BD=CD.
∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.
在△BED与△CFD中,∴△BED≌△CFD(AAS)∴DE=DF,
∴AD平分∠BAC
3.(1)过点E作EF⊥DC,∵E是∠BCD,∠ADC的平分线的交点,又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE
(2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC,
∠ECD=∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠ECD)=90°
4. 提示:先运用AO是∠BAC的平分线得DO=EO,再利用“ASA”证△DOB≌△EOC,进而得BO=CO.
第十二章轴对称
§12.1轴对称(一)
一、1.A 2.D
二、1. (注一个正“E”和一个反“E”合在一起) 2.2 43.70° 6
三、1.轴对称图形有:图(1)中国人民银行标志,图(2)中国铁路标徽,图(4)沈阳太空集团标志三个图案.其中图(1)有3条对称轴,图(2)与(4)均只有1条对称轴.
2. 图2:∠1与∠3,∠9与∠10,∠2与∠4,∠7与∠8,∠B与∠E等; AB与AE,BC与ED,AC与AD等.图3:∠1与∠2,∠3与∠4,∠A与∠A′等;AD与A′D′,
CD与C′D′, BC与B′C′等.
§12.1轴对称(二)
一、1.B 2.B3.C4.B5.D
二、1.MB直线CD2. 10cm3.120°
三、1.(1)作∠AOB的平分线OE;(2)作线段MN的垂直平分线CD,OE与CD交于点P,
点P就是所求作的点.
2.解:因为直线m是多边形ABCDE的对称轴,则沿m折叠左右两部分完全重合,所以
∠A=∠E=130°,∠D=∠B=110°,由于五边形内角和为(5-2)×180°=540°,
即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,
所以∠BCD=60°
3. 20提示:利用线段垂直平分线的性质得出BE=AE.
§12.2.1作轴对称图形
一、1.A 2.A 3.B
二、1.全等2.108
三、1. 提示:作出圆心O′,再给合圆O的半径作出圆O′. 2.图略
3.作点A关于直线a的对称点A′,连接A′B交直线a于点C,则点C为所求.当该站建在河边C点时,可使修的渠道最短.如图
§12.2.2用坐标表示轴对称
一、1.B 2.B 3.A4.B 5.C
二、1.A(0,2), B(2,2), C(2,0), O(0,0)
2.(4,2) 3. (-2,-3)
三、1. 解:A(-3,0),B(-1,-3),C(4,0),D(-1,3),
点A、B、C、D关于y轴的对称点坐标分别为A′(3,0)、
B′(1,-3)、C′(-4,0)、D′(1,3)顺次连接A′B′C′D′.如上图
2.解:∵M,N关于x轴对称, ∴
∴ ∴ba+1=(-1)3+1=0
3.解:A′(2,3),B′(3,1),C′(-1,-2)
§12.3.1等腰三角形(一)
一、1.D 2.C
二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3. 82.5°
三、1.证明: ∵∠EAC是△ABC的外角 ∴∠EAC=∠1+∠2=∠B+∠C∵AB=AC
∴∠B=∠C∴∠1+∠2=2∠C∵∠1=∠2 ∴2∠2=2∠C
∴∠2=∠C∴AD//BC
2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.设∠B=x,
则∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC中,
∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.
§12.3.2等腰三角形(二)
一、1.C 2.C 3.D
二、1.等腰2. 93.等边对等角,等角对等边
三、1.由∠OBC=∠OCB得BO=CO,可证△ABO≌△ACO,得AB=AC ∴△ABC是等腰三角形.
2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE,
∴△BEC是等腰三角形.
3.(1)利用“SAS”证△ABC≌△AED. (2)△ABC≌△AED可得∠ABO=∠AEO,
AB=AE得∠ABE=∠AEB.进而得∠OBE=∠OEB,最后可证OB=OE.
§12.3.3等边三角形
一、1.B 2.D 3.C
二、1.3cm 2. 30°,4 3. 1 4. 2
三、1.证明:∵在△ADC中,∠ADC=90°, ∠C=30° ∴∠FAE=60° ∵在△ABC中,
∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE= ×60°=30°
∵在△ABE中,∠ABE=30°,∠BAE=90° ∴∠AEF=60°
∴在△AEF中∠FAE=∠AEF=60° ∴FA=FE ∵∠FAE=60°∴△AFE为等边三角形.
2.解:∵DA是∠CAB的平分线,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中,
由于∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6cm
∴BC=CD+DE=3+6=9(cm)
3. 证明:∵△ABC为等边三角形,∴BA=CA , ∠BAD=60°.
在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴AD=AE,
∠BAD=∠CAE=60°∴△ADE是等边三角形.
4. 提示:先证BD=AD,再利用直角三角形中,30°角所对的直角边是斜边的一半,
得DC=2AD.
第十三章 实数
§13.1平方根(一)
一、1. D 2. C
二、1. 6 2.3. 1
三、1. (1)16 (2)(3)0.4
2. (1)0, (2)3 , (3) (4)40(5)0.5 (6) 4
3. =0.54. 倍; 倍.
§13.1平方根(二)
一、1. C 2. D
二、1. 2 2. 3. 7和8
三、1.(1) (2) (3)
2.(1)43(2)11.3(3)12.25 (4)(5)6.62
3.(1)0.5477 1.7325.477 17.32
(2)被开方数的小数点向右(左)移动两位,所得结果小数点向右(左)
移动一位。 (3)0.1732 54.77
§13.1平方根(三)
一、1. D 2. C
二、1. ,2 2, 3.
三、1.(1)(2) (3)(4)
2.(1)(2)-13(3)11(4)7(5) 1.2 (6)-
3.(1) (2) (3) (4)
4. ,这个数是4 5. 或
§13.2立方根(一)
一、1. A2. C
二、1. 1252. ±1和03. 3
三、1.(1)-0.1(2)-7 (3)(4)100(5)- (6)-2
2.(1)-3 (2)(3)3. (a≠1)
§13.2立方根(二)
一、1. B2. D
二、1. 1和0; 2. < < >3. 2
三、1. (1)0.73(2)±14 (3)
2. (1)-2(2)-11(3)±1 (4)-(5)-2 (6)
3.(1)(2) (3) (4)x=-4 (5)x= (6)x= +1
§13.3实数(一)
一、1. B2. A
二、1.
2. ±3 3.
三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,4
2. 略 3.16cm、12cm 4. a= ,b=-
§13.3实数(二)
一、1. D 2. D
二、1.2. 3 3. ①< ,②>,③-π<-3<-
三、1.(1) (2)(3) 3
2.(1)1.41 (2)1.17 (3)2.27 (4)7.08
3.(1) (2) -6(3)-5.14(4)3
4.(1)(4, );(2)A′(2+ ,2),B′(5+ ,2),C′(4+ , ),D′(1+ , );
(3)6-3
第十四章一次函数
§14.1.1变量
一、1.C 2.B
二、1. 6.5;y和n 2.100;v和t 3. t=30-6h
三、(1)y=13n;(2)n= ;(3)S= ;(4)y=180-2x.
§14.1.2函数
一、1. D2. C
二、1.-1 ; ;2.全体实数; x≠2; x≥; x≤3且x≠2.
三、解答题
1.(1)Q=800-50t;(2)0≤t≤16;(3)500m3 2.(1)y=2.1x;(2)105元
§14.1.3函数的图象(一)
一、1. A2. A
二、1. 50 2.(1)100;(2)乙;(3)10.
三、(1)甲;2小时; (2)乙;2小时;(3)18km/h;90 km/h
§14.1.3函数的图象(二)
一、1.C 2. D
二、1.1; 2. (1,3)(不唯一)
三、1.略2.(1)略; (2)当x<0时,y 随x的增大而增大,当x>0时,
y 随x的增大而减小
§14.1.3函数的图象(三)
一、1. C2.D
二、1. 列表法、图象法、解析法;
2.(1)乙;1(2)1.5;(3)距离A地40 km处; (4)40;
三、1. (1) 4辆;(2) 4辆2. (1)Q=45-5t;(2)0≤t≤9;(3)能,理由略
§14.2.1正比例函数(一)
一、1. B 2. B
二、1. y=-3x 2. -8 3. y=-2x;
三、1. 略2. y=-3x 3. y=2x
§14.2.1正比例函数(二)
一、1. C2.C
二、1. k<2. ;y= x
三、(1)4小时;30千米/时;(2)30千米;(3) 小时
§14.2.2一次函数(一)
一、1. B 2. B
二、1. -1;y=-2x+2;2. y=2x+4;3. y=x+1
三、1. (1)y==60x,是一次函数,也是正比例函数 (2)y=πx2,不是一次函数,也不是正比例函数 (3)y=2x+50,是一次函数,但不是正比例函数
2. (1)h=9d-20; (2)略; (3)24cm
§14.2.2一次函数(二)
一、1. B2. B
二、1. 减小;一、二、四;2. y=-2x+1;3. y=x-3
三、1.略2. y=-3x-2, 1, -2, -5
3.(1)y=-6x+11; (2)略; (3)①y随x的增大而减小:②11≤y≤23
4. y=x+3
§14.2.2一次函数(三)
一、1. B 2. D
二、1. y=3x-2;( ,0)2. y=2x+14 3. y=100+0.36x;103.6
三、1. (1)y=-2x+5;(2) 2.(1)0.5;0.9;(2)当0≤x≤50,y=0.5x;当x>50时,y=0.9x-20
§14.3.1一次函数与一元一次方程
一、1. C 2.A.
二、1. ( ,0);2.(- ,0);3. ( ,0);x=1
三、1. 6年;2.-13. (1)k=- ,b=2 (2)-18 (3)-42
§14.3.2一次函数与一元一次不等式
一、1. C 2. C
二、1. x=1; x<1 2. 0<x<1 3. x<-2
三、1. x≤1;图象略
2. (1)与y轴交点为(0,2),与x轴交点为(2,0)(2)x≤2
3.(1) x>(2)x<(3)x>0
§14.3.3一次函数与二元一次方程(组)
一、1. D 2. C
二、1. y= x-2. (1,-4)四3.y=2x
三、图略
§14.4课题学习选择方案
1. (1)y1=3x;y2=2x+15;(2)169网;(3)15小时
2. (1)y=50x+1330,3≤x≤17;(2)A校运往甲校3台,A校运往乙校14台,B校运往甲校15台;1480元3.(1) =50+0.4 , =0.6 ;(2)250分钟;(3)“全球通”;
第十五章整式的乘除与因式分解
§15.1整式的乘法(一)
一、1 .C2.D
二、1. ; 2. ;3.
三、1.(1) ;(2) ;(3) ;(4) ;(5) ;(6)0;
(7) ;(8)
2.化简得,原式= ,其值为 . 3.(1)8;(2)32.
§15.1整式的乘法(二)
一、1.B2.C
二、1.2.-3.
三、1.(1) ; (2) ; (3) ;(4)(5) ;
(6) ;(7) ; (8)
2.化简得,原式= ,其值为 . 3. 米
§15.1整式的乘法(三)
一、1 .A2.D
二、1.2.3.
三、1.(1) ;(2) ;(3) ;(4) ;
(5);(6) ; (7) ;(8)
2.化简得,原式= ,其值为 . 3.
§15.1整式的乘法(四)
一、1 .D 2.B
二、1. ;2. ;3.
三、1.(1) ;(2) ;(3) ;(4) ;
(5) ;(6) ;(7) ;(8)
2.化简得,原式= ,其值为-2.3.
§15.2乘法公式(一)
一、1.B 2.C
二、 1.2.3.
三、1.(1) ; (2)39975;(3) ; (4) ;
(5) ; (6) ;(7) ; (8)
2.化简得,原式= ,其值为 . 3. 5
§15.2乘法公式(二)
一、1 .C2.B
二、1.2.3..
三、1.(1) ; (2) ; (3) ;
(4) (5) ; (6) ;
(7) ; (8)
2.(1) ; (2)
(3) ;(4)
3.(1)2;(2)±1
§15.3整式的除法(一)
一、1 .A2.C
二、1.2.
三、1.(1) ;(2) ;(3) ;(4) ;(5) ; (6)1;(7)
2. 化简得,原式= ,其值为11. 3. 16
§15.3整式的除法(二)
一、1 .D2.C
二、1.2.3.
三、1.(1) ; (2) ; (3) ;(4) ;(5) ;
(6) ; (7) ;(8)
2. 化简得,原式= ,其值为-3.
§15.4因式分解(一)
一、1.B 2.A
二、1.2.3.
三、1.(1) ; (2) ; (3) ;
(4) ; (5) ; (6) ;
(7) ;(8) ;(9) ;
(10)2. 237
§15.4因式分解(二)
一、1.C 2.D
二、1.2.3.
三、1.(1) ; (2) ;(3) ;
(4) ; (5) ;(6) ;
(7) ;(8) ;
(9) ;(10)
2.
§15.4因式分解(三)
一、1 .C 2.D
二、1.2.16 3.
三、1.(1) ;(2) ;(3) ;(4) ;(5) ;
(6) ;(7) ;(8) ;(9) ;(10)
2.原式=检查是否有新评论
文章评论10-05 14:06回复张恬恬在 角的平分线的性质 之后还有一个 测试与验收 呢 为什么没有,我要的就是 测试与验收 的答案页次: 1/1, 共 1 条...12345678910...►第页
请后发表评论© HERSP. 琼ICP备08100406
1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与罩搜∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有渗闷搜∠B与∠BCE,丛历∠B与∠HAB,∠D与∠GAD,∠D与∠DCF。