作为实数变量x的函数, 的图像总是正的(在x轴之上)并递增(从左向右看)。它永不触及x轴,尽管它可以无限程度地靠近x轴(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。
有时,尤其是在科学中,术语指数函数更一般性的用于形如 (k属于R) 的函数,这里的 a 叫做“底数”,是不等于 1 的任何正实数。
exp什么意思化妆品
exp:高等数学里以自然常数e为底的指数函数,它又是航模名词,全称指数曲线。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于2、718281828,还称为欧拉数。
当a大于1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候y等于1。当a大于0小于1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候y等于1。
扩展资料:
线性代数中,欧拉数对向量丛的一种刻画。有向向量丛的零截面对于底空间的相交数。设ξ=(E,π,M)是n维有向向量丛,M是n维紧致连通有向(无边)微分流形。若将底空间M与ξ的零截面的像等同;
称为向量丛ξ的欧拉数。设M如上述,ξ=TM,则χ(ξ)称为流形M的欧拉特征,记为χ(M)。例如,χ(S……2n)=2(因而S^2n上任何向量场均有零点),χ(S)=0.欧拉数是向量丛的同构不变量.在流形的切丛情形,得到在代数拓扑中有广泛应用的拓扑不变量——流形的欧拉特征数。
数学上exp是什么意思
exp,高等数学里以自然常数e为底的指数函数,全称Exponential(指数曲线)。
就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
扩展资料:
函数图像:
(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。
A-B大于0即A大于B A-B等于0即A=B A-B小于0即A小于B 步骤:做差—变形—定号—下结论 ;A\B大于1即A大于B A\B等于1即A等于B A/B小于1即A小于B (A,B大于0)。
参考资料来源:百度百科-指数函数
公式中exp什么意思
exp是高等数学里以自然常数e为底的指数函数,它同时又是航模名词,全称Exponential(指数曲线)。
指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
以上就是exp什么意思数学的全部内容,exp:高等数学里以自然常数e为底的指数函数,它又是航模名词,全称指数曲线。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于2、718281828,还称为欧拉数。当a大于1时。