目录世界上所有的数学符号 平方算不算数学符号 数学符号一览表 数学符号指的是什么 高中数学所有符号名称
数学符号的发旅拍明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
数学符号有太多比一一例举,比如有:
1、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号|
|,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
2、关系符号
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或拆厅羡等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→
”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比伏伏例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b
表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
3、结合符号
如小括号“()”,中括号“[
]”,大括号“{
}”,横线“—”
4、性质符号
如正号“+”,负号“-”,正负号等。
5、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),∵
因为,∴
所以等等。
6、排列组合符号
C
组合数,A
(或P)
排列数,n
元素的总个数,r
参与选择的元素个数,!
阶乘等。
7、离散数学符号
如∀
全称量词,∃存在量词,├
断定符(公式在L中可证),╞
满足符(公式在E上有效,公式在E上可满足),﹁
命题的“非”运算,如命题的否定为﹁p,∧
命题的“合取”(“与”)运算,∨
命题的“析取”(“或”,“可兼或”)运算,→
命题的“条件”运算,↔
命题的“双条件”运算的等。
数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N。
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。
3、全体整数的集合通常称作整数集,记作Z。
4、全体有理数的集合通常简称有理数集携老激,记作Q。
5、全体实数的集合通常简称实数集,记作R。
6、复数集合计作C。
扩展资料:
1、集合,是指具有某种特定性质的具体的或抽象的对象汇总辩袜成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个含模中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。
2、元素与集合的关系有:“属于”与“不属于”两种。
3、集合的运算:
(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
数学符号一般有以下几种:(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏.(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等.(3)关系符号:如“=”是等号,“≈”闹卖培或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等.(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—” (5)性质符号:如正号“+”,负号“-”,绝对值符号“‖” (6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等.符号 意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪ 集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡配码 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分 x - floor(x) ∫f(x)δx 不定积分 ∫[a:b]f(x)δx a到b的定积分 P为真等于1否则等于0 ∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求极限 f(z) f关于z的m阶导函数 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n m⊥n m与n互质 a∈ A a属于集合A #A 集合A中的元素个液唯数
数学的运宴灶算符晌锋扮号:加(+)、减(-)、乘(×)、除( ÷)。
加、减法是第一级运算,乘、除法是第二级运算;在四则混合运算中要先算第二级运算,后算第一级运算,即“先乘基乱除后加减”。
1.运算符号:
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(困历∮)等。
2.关系符号:
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是前散平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”),x,y等任何字母都可以代表未知数。
3.结合符号:
如小括号“()”,中括号“[ ]”,大括号“{ }”,横线“—”
4.性质符号:
如正号“+”,负号“汪悔搜-”,正负号“
5.省略符号:
∵因为
∴所以
6.排列组合符号:
C组合数
A (或P)排列数
n元素的总个数
r参与选择的元素个数
!阶乘,如5!=5×4×3×2×1=120,规定0!=1
7.离散数学符号
∀全称量词
∃存在量词