七年级下册数学试卷及答案?2若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?七年级数学下期末试卷参考答案 一、那么,七年级下册数学试卷及答案?一起来了解一下吧。
这篇关于七年级下册数学期末考试卷解答,是 无 特地为大家整理的,希望对大家有所帮助!
一、选择题(每小题2分,共16分)
1.要调查下列问题,你认为哪些适合抽样调查( ▲ )
①市场上某种食品的某种添加剂的含量是否符合国家标准
②调查某单位所有人员的年收入
③检测某地区空气的质量
④调查你所在学校学生一天的学习时间
A.①②③ B.①③ C.①③④ D.①④
2.下列计算正确的是( ▲ )
A. B. C. D.
3.如图,在所标识的角中,同位角是( ▲ )
A.∠1和∠2 B.∠1和∠3 C.∠1和∠4 D.∠2和∠3
4.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法中正确的是( ▲ )
A.总体是300 B.样本容量为30 C.样本是30名学生 D.个体是每个学生
5.-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为( ▲ )
A.6 B.7 C.8 D.9
6.甲和乙两人玩“打弹珠”游戏,甲对乙说:“把你珠子的一半给我,我就有10颗珠子”,乙却说:“只要把你的 给我,我就有10颗”,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是( ▲ )
A. B. C. D.
7.如图,△ACB≌△ , ,则 的度数为( ▲ )
A.20° B.30° C.35° D.40°
8.如图,OA=OB,∠A=∠B,有下列3个结论:
①△AOD≌△BOC,②△ACE≌△BDE,
③点E在∠O的平分线上,
其中正确的结论是( ▲ )
A.只有① B.只有② C.只有①② D.有①②③
二.填空题(每小题2分,共20分)
9.某种流感病毒的直径大约为0.000 000 08米,用科学记数法表示为 ▲ 米.
10.某班级45名学生在期末学情分析考试中,分数段在120~130分的频率为0.2,则该班级在这个分数
段内的学生有 ▲ 人.
11.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,
这种做法的根据是 ▲ .
12.如果 , ,则 ▲ .
13.如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°, 第11题图
则∠EAD= ▲ °.
14.如图,把边长为3cm的正方形ABCD先向右平移l cm,再向上平移l crn,得到正方形
EFGH,则阴影部分的面积为 ▲ cm2.
15.如图,△ABC中,∠C=90°,DB是∠ABC的平分线,点E是AB的中点,
且DE⊥AB,若BC=5cm,则AB= ▲ cm.
16.已知x=a,y=2是方程 的一个解,则a= ▲ .
17.一个三角形的两边长分别是2和6,第三边长为偶数,则这个三角形的周长是 ▲ .
18.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的
∠CFE的度数是 ▲ °.
三、计算与求解.
19.(每小题4分,共8分)计算:
(1) ; (2) .
20.(每小题4分,共8分)分解因式:
(1) ; (2) .
21.(本小题6分)先化简再求值: ,其中 .
22.(本小题6分)解方程组:
四、操作与解释.
23.(本小题6分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
24.(本小题6分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调
查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)该班共有_______________名学生;
(2)将“骑自行车”部分的条形统计图补充完整;
(3)在扇形统计图中;求出“乘车”部分所对应的圆心角的度数;
(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.
25.(本小题8分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.
(1)△OAB 与△OCD全等吗?为什么?
(2)过点O任意作一条与AB、AC都相交的直线MN,交点分别
为M、N,OM与ON相等吗?为什么?
五、解决问题(本题满分8分)
26.某汉堡店员工小李去两户家庭外送汉堡包和澄汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了32元,第二家送2个汉堡包和3杯橙汁,向顾客收取了28元.
(1)如果汉堡店员工外送4个汉堡包和5杯橙汁,那么他应收顾客多少元钱?
(2)若有顾客同时购买汉堡包和橙汁且购买费用恰好为20元,问汉堡店该如何配送?
六、探究与思考(本题满分8分)
27.如图,已知△ABC中,AB=AC=6 cm, ,BC=4 cm,点D为AB的中点.
(1)如果点P在线段BC上以1 cm/s的速度由点B向点C运动,同时,点Q在线段CA上
由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,
请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使
△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都
逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
南京三十九中2011-2012学年七年级下学期期末考试数学卷
参考答案及评分标准
一、选择题(每小题2分,共16分)
题号 1 2 3 4 5 6 7 8
答案 C D C B A D B D
二.填空题(每小题2分,共20分)
9.8×10-8;10.9;11.三角形的稳定性;12.6;13.5;
14.4;15.10; 16. ; 17.14;18.105;
三.计算与求解
19.解:(1)原式= …………………2分
= …………………… …..……3分
= …………………………………..……4分
(2)原式= ………………..……3分
=9…………………………………..……4分
20.解:(1)原式= ……………2分
……………………4分
(2)原式 ……………………2分
……………………4分
21.解:原式 ……………3分
……………4分
………………………………5分
当 时,原式=9…………………6分
22.解:
①×10,得 ③…… 1分
②-③,得 …………………2分
∴ ………………………………3分
把 代入③,得 …4分
∴ ………………………………5分
∴ 原方程组的解是 …………6分
四.操作与解释
23.(1) .理由如下:…………………1分
∵ , ,
∴ .…………………2分
∴ .………………………………3分
(2)∵ ,
∴ .………………………………4分
∵ ,
∴ .
∴ .………………………………5分
∴ .……………………6分
24.(1)40.………………………………1分
(2)略.………………………………3分
(3) .……………………5分
(4)600×20%=120(名).……………………6分
25.(1)△OAB 与△OCD全等.理由如下:…………………1分
在△OAB 与△OCD中,
∴ △OAB≌△OCD (SAS).
(2)OM与ON相等.理由如下:…………………5分
∵ △OAB≌△OCD,
∴ .……………………6分
在△OAB 与△OCD中,
……………………7分
∴ △MOB≌△NOD (ASA).
∴ .……………………8分
26.解:(1)设每个汉堡为x元和每杯橙汁y元.……………………1分
根据题意,得 ……………………3分
解之,得 ……………………4分
所以 .………………………………5分
答:他应收顾客52元钱.………………………………6分
(2)设配送汉堡a只,橙汁b杯.
根据题意,得 .………………………………7分
∴ .
又∵ a、b为正整数,
∴ , ; , .
答:汉堡店该配送方法有两种:
外送汉堡1只,橙汁3杯或外送汉堡2只,橙汁1杯.………………………………8分
27.(1)①△BPD与△CQP全等.理由如下:
∵ D是AB的中点, ,
∴ .
经过1秒后, .
∵ ,
∴ .
在△BPD与△CQP中,
∴ △BPD≌△CQP (SAS).………………………………3分
②设点Q的运动速度为x cm/s,经过t秒后△BPD≌△CQP,
则 , .
∴ 解得
即点Q的运动速度为 cm/s时,能使△BPD与△CQP全等.………………………………5分
(2)设经过y秒后,点P与Q第一次相遇,
则 ,解得 .………………………………7分
此时点P的运动路程为24 cm.
∵ △ABC的周长为16,
,
∴ 点P、Q在边上相遇.………………………………8分
马上就要七年级数学期末考试了,没有目标就没有方向,每一个学习阶段都应该给自己树立一个目标。我整理了关于七年级下册期末试卷数学人教版,希望对大家有帮助!
七年级下册期末数学人教版试题
一、选择题(共10小题,每小题3分,满分30分)
1.下列图形中∠1和∠2是对顶角的是()
A. B. C. D.
2.估计 的值在哪两个整数之间()
A.77和79 B.6和7 C.7和8 D.8和9
3.若m是任意实数,则点M(m2+2,﹣2)在第()象限.
A.一 B.二 C.三 D.四
4.线段AB是由线段PQ平移得到的,点P(﹣1,3)的对应点为A(4,7),则点Q(﹣3,1)的对应点B的坐标是()
A.(2,5) B.(﹣6,﹣1) C.(﹣8,﹣3) D.(﹣2,﹣2)
5.在实数0、π、 、2+ 、3.12312312…、﹣ 、 、1.1010010001…中,无理数的个数有()
A.3个 B.4个 C.5个 D.6个
6.如图,能判定EC∥AB的条件是()
A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD
7.若方程组 的解满足x+y=0,则a的取值是()
A.a=﹣1 B.a=1 C.a=0 D.a不能确定
8.下列调查中,适合采用全面调查(普查)方式的是()
A.一个城市某一天的空气质量
B.对某班40名同学体重情况的调查
C.对某类烟花爆竹燃放安全情况的调查
D.对端午期间市场上粽子质量情况的调查
9.关于x的不等式2x+a≤﹣3的解集如图所示,则a的取值是()
A.0 B.﹣1 C.﹣2 D.﹣3
10.平面直角坐标系中,点A(﹣2,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()
A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)
二、填空题(共6小题,每小题3分,满分18分)
11.已知 =18.044,那么± =.
12.已知a>3,不等式(3﹣a)x>a﹣3解集为.
13.已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是.
14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为.
15.下列命题中,
(1)一个锐角的余角小于这个角;
(2)两条直线被第三条直线所截,内错角相等;
(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;
(4)若a2+b2=0,则a,b都为0.
是假命题的有.(请填序号)
16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2017的坐标是.
三、解答题(共17分)
17.计算:(﹣1)2016+ ﹣3+ × .
18.解方程组: .
19.解不等式组 ,并求出它的整数解.
四、(共16分,20、21题各8分)
20.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.
21.某次考试结束后,班主任老师和小强进行了对话:
老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?
小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分.
请问:小强这次考试英语、数学成绩各是多少?
五、共19分,第22题8分,第23题11分
22.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:
(1)九年(1)班有名学生;
(2)补全直方图;
(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;
(4)求该年级每天阅读时间不少于1小时的学生有多少人?
23.善于思考的小明在解方程组 时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为 .
请你解决以下问题:
(1)模仿小明的“整体代换”法解方程组 ;
(2)已知x,y满足方程组
①求x2+9y2的值;
②求x+3y的值.[参考公式(a+b)2=a2+2ab+b2].
2015-2016学年安徽省芜湖市南陵县七年级(下)期末数学试卷
参考答案与试题解析
七年级下册期末试卷数学人教版参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.下列图形中∠1和∠2是对顶角的是()
A. B. C. D.
【考点】对顶角、邻补角.
【分析】一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角.依据定义即可判断.
【解答】解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.
故选D.
2.估计 的值在哪两个整数之间()
A.77和79 B.6和7 C.7和8 D.8和9
【考点】估算无理数的大小.
【分析】首先对 进行估算,再确定 是在哪两个相邻的整数之间.
【解答】解:∵ < ,
∴8< <9,
∴ 的值在8和9之间,
故选:D.
3.若m是任意实数,则点M(m2+2,﹣2)在第()象限.
A.一 B.二 C.三 D.四
【考点】点的坐标.
【分析】根据平方数非负数的性质判断出点M的横坐标是正数,再根据各象限内点的坐标特征解答.
【解答】解:∵m2≥0,
∴m2+2≥2,
∴点M(m2+2,﹣2)在第四象限.
故选D.
4.线段AB是由线段PQ平移得到的,点P(﹣1,3)的对应点为A(4,7),则点Q(﹣3,1)的对应点B的坐标是()
A.(2,5) B.(﹣6,﹣1) C.(﹣8,﹣3) D.(﹣2,﹣2)
【考点】坐标与图形变化-平移.
【分析】先根据点P、A的坐标判断平移的方向与距离,再根据点Q的坐标计算出点B的坐标即可.
【解答】解:∵点P(﹣1,3)的对应点为A(4,7),
∴线段向右平移的距离为:4﹣(﹣1)=5,向上平移的距离为:7﹣3=4,
∴点Q(﹣3,1)的对应点B的横坐标为:﹣3+5=2,纵坐标为:1+4=5,
∴B(2,5).
故选(A)
5.在实数0、π、 、2+ 、3.12312312…、﹣ 、 、1.1010010001…中,无理数的个数有()
A.3个 B.4个 C.5个 D.6个
【考点】无理数.
【分析】无理数的三种常见类型:①开方开不尽的数,②无限不循环小数,③含有π的数.
【解答】解:0是有理数;
π是无理数;
是一个分数,是有理数;
2+ 是一个无理数;
3.12312312…是一个无限循环小数,是有理数;
﹣ =﹣2是有理数;
是无理数;
1.1010010001…是一个无限不循环小数,是无理数.
故选:B.
6.如图,能判定EC∥AB的条件是()
A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD
【考点】平行线的判定.
【分析】直接利用平行线的判定定理判定即可求得答案.注意排除法在解选择题中的应用.
【解答】解:∵当∠B=∠ECD或∠A=∠ACE时,EC∥AB;
∴B正确,A,C,D错误.
故选B.
7.若方程组 的解满足x+y=0,则a的取值是()
A.a=﹣1 B.a=1 C.a=0 D.a不能确定
【考点】二元一次方程组的解;二元一次方程的解.
【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.
【解答】解:方程组两方程相加得:4(x+y)=2+2a,
将x+y=0代入得:2+2a=0,
解得:a=﹣1.
故选:A.
8.下列调查中,适合采用全面调查(普查)方式的是()
A.一个城市某一天的空气质量
B.对某班40名同学体重情况的调查
C.对某类烟花爆竹燃放安全情况的调查
D.对端午期间市场上粽子质量情况的调查
【考点】全面调查与抽样调查.
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【解答】解:A、调查一个城市某一天的空气质量,应该用抽样调查,
B、对某班40名同学体重情况的调查,应该用全面调查,
C、对某类烟花爆竹燃放安全情况的调查,应该用抽样调查,
D、对端午期间市场上粽子质量情况的调查,应该用抽样调查;
故选:B.
9.关于x的不等式2x+a≤﹣3的解集如图所示,则a的取值是()
A.0 B.﹣1 C.﹣2 D.﹣3
【考点】解一元一次不等式;在数轴上表示不等式的解集.
【分析】将a看作常数求得该不等式解集,再由不等式解集在数轴上的表示可得关于a的方程,解方程即可得a的值.
【解答】解:移项,得:2x≤﹣3﹣a,
系数化为1,得:x≤ ,
由不等式可知该不等式的解集为x≤﹣1,
∴ =﹣1,
解得:a=﹣1,
故选:B.
10.平面直角坐标系中,点A(﹣2,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()
A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)
【考点】坐标与图形性质.
【分析】分析:由AC∥x轴,A(﹣2,2),根据坐标的定义可求得y值,根据线段BC最小,确定BC⊥AC,垂足为点C,进一步求得BC的最小值和点C的坐标.
【解答】解:依题意可得
∵AC∥x,
∴y=2,
根据垂线段最短,当BC⊥AC于点C时,
点B到AC的距离最短,即
BC的最小值=5﹣2=3
此时点C的坐标为(3,2)
故选:D
二、填空题(共6小题,每小题3分,满分18分)
11.已知 =18.044,那么± =±1.8044.
【考点】平方根;算术平方根.
【分析】根据算术平方根的意义,被开方数的小数点每移动两位,其结果的小数点移动一位,据此判断即可.
【解答】解:∵ =18.044,
∴ =1.8044,
即± =±1.8044.
故答案为:±1.8044
12.已知a>3,不等式(3﹣a)x>a﹣3解集为x<﹣1.
【考点】解一元一次不等式.
【分析】首先判断出3﹣a<0,然后根据不等式的性质求出不等式的解集.
【解答】解:∵a>3,
∴3﹣a<0,
∴不等式(3﹣a)x>a﹣3解集为x<﹣1,
故答案为x<﹣1.
13.已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是24.
【考点】频数(率)分布直方图;总体、个体、样本、样本容量.
【分析】根据各小长方形的高比为2:4:1:3,得频数之比为2:4:1:3,由此即可解决问题.
【解答】解:∵样本容量为60,各小长方形的高比为2:4:1:3,
∴那么第二组的频数是60× =24,
故答案为24.
14.如图,将三角板的直角顶点放在直尺的一边上,若∠1=70°,则∠2的度数为20°.
【考点】平行线的性质.
【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.
【解答】解:∵直尺对边平行,
∴∠3=∠1=70°,
∴∠2=180°﹣70°﹣90°=20°.
故答案为:20°.
15.下列命题中,
(1)一个锐角的余角小于这个角;
(2)两条直线被第三条直线所截,内错角相等;
(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;
(4)若a2+b2=0,则a,b都为0.
是假命题的有(1)(3).(请填序号)
【考点】命题与定理.
【分析】利于锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.
【解答】解:(1)一个锐角的余角小于这个角,错误,是假命题;
(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;
(3)a,b,c是直线,若a⊥b,b⊥c,则a∥c,故错误,是假命题;
(4)若a2+b2=0,则a,b都为0,正确,为真命题,
故答案为(1)(3).
16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2017的坐标是(﹣505,﹣505).
【考点】规律型:点的坐标.
【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2017的坐标.
【解答】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,
∵2017÷4=504…1;
∴A2017的坐标在第三象限,
横坐标为﹣|÷4+1|=﹣505;纵坐标为﹣505,
∴点A2017的坐标是(﹣505,﹣505).
故答案为:(﹣505,﹣505).
三、解答题(共17分)
17.计算:(﹣1)2016+ ﹣3+ × .
【考点】实数的运算.
【分析】先根据数的乘方与开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.
【解答】解:原式=1+2﹣3+1
=3﹣3+1
=1.
18.解方程组: .
【考点】解二元一次方程组.
【分析】方程组利用加减消元法求出解即可.
【解答】解:①+②×3得:5x=40,即x=8,
把x=8代入②得:y=2,
则方程组的解为 .
19.解不等式组 ,并求出它的整数解.
【考点】一元一次不等式组的整数解;解一元一次不等式组.
【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集范围内找出其整数解即可.
【解答】解:由①得,x>﹣2,由②得,x≤2,
故不等式组的取值范围是﹣2
四、(共16分,20、21题各8分)
20.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.
【考点】平行线的性质.
【分析】由平行线的性质可找出相等和互补的角,根据角的计算找出∠EFD=2∠DFH=110°,从而得出FH平分∠EFD的结论.
【解答】解:FH平分∠EFD,理由如下:
∵AB∥CD,
∴∠CFE=∠AGE,∠BHF+∠DFH=180°,
∵∠AGE=70°,∠BHF=125°,
∴∠CFE=70°,∠DFH=55°,
∵∠EFD=180°﹣∠CFE=110°,
∴∠EFD=2∠DFH=110°.
∴FH平分∠EFD.
21.某次考试结束后,班主任老师和小强进行了对话:
老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?
小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分.
请问:小强这次考试英语、数学成绩各是多少?
【考点】二元一次方程组的应用.
【分析】设小强的英语成绩为x分,数学成绩为y分,等量关系为:语文成绩+数学成绩+英语成绩=348,语文成绩+英语成绩+16+数学成绩×(1+15%)=382,列出方程组,求解即可
【解答】解:设小强的英语成绩为x分,数学成绩为y分,
由题意得, ,
解得:
答:小强这次考试英语成绩为104分,数学成绩为120分.
五、共19分,第22题8分,第23题11分
22.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:
(1)九年(1)班有50名学生;
(2)补全直方图;
(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;
(4)求该年级每天阅读时间不少于1小时的学生有多少人?
【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.
【分析】(1)利用条形统计图与扇形统计图中0~0.5小时的人数以及所占比例进而得出该班的人数;
(2)利用班级人数进而得出0.5~1小时的人数,进而得出答案;
(3)利用九年级其他班级每天阅读时间在1~1.5小时的学生有165人,求出1~1.5小时在扇形统计图中所占比例,进而得出0.5~1小时在扇形统计图中所占比例;
(4)利用扇形统计图得出该年级每天阅读时间不少于1小时的人数,进而得出答案.
【解答】解:(1)由题意可得:4÷8%=50(人);
故答案为:50;
(2)由(1)得:0.5~1小时的为:50﹣4﹣18﹣8=20(人),
如图所示:
;
(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,
∴1~1.5小时在扇形统计图中所占比例为:165÷×100%=30%,
故0.5~1小时在扇形统计图中所占比例为:1﹣30%﹣10%﹣12%=48%,
如图所示:
;
(4)该年级每天阅读时间不少于1小时的学生有:×(30%+10%)+18+8=246(人).
23.善于思考的小明在解方程组 时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为 .
请你解决以下问题:
(1)模仿小明的“整体代换”法解方程组 ;
(2)已知x,y满足方程组
①求x2+9y2的值;
②求x+3y的值.[参考公式(a+b)2=a2+2ab+b2].
【考点】高次方程;二元一次方程组的解.
【分析】分析:(1)把②变形为6x﹣3y+y=6,整体代入,先求出y;
【解答】解:(1)
由②得:6x﹣3y+y=6,
3(2x﹣y)+y=6③,
把①代入③得:3×1+y=6,
解得:y=3,
把y=3代入①得:2x﹣3=1,
解得:x=2,
所以原方程组的解为 ;
(2)①
①×2+②,得7x2+63y2=126,
等式的两边都除以7,得x2+9y2=18.
②.①×3﹣②×2,得﹣7xy=﹣21,
∴xy=3,6xy=18
∵x2+9y2=18,
∴x2+6xy+9y2=18+18,
∴(x+3y)2=36,
∴x+3y=±6.
七年级下期数学期末考试复习,要做一下试题。我整理了关于七年级数学下册期末测试题,希望对大家有帮助!
七年级数学下册期末测试题
一、精心选一选(本题共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.2a×3a=6a B.a2÷a2=0
C.a×(a-2)=a2-2a D.a•a-1=a
2.若m+n=﹣1,则(m+n)2﹣4m﹣4n的值是()
A.5 B.0 C.1 D.4
3.要使分式 有意义,则x的取值应满足()
A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1
4.已知x,y满足关系式2x+y=9和x+2y=6,则x+y的值为()
A.6 B.﹣1 C.15 D. 5
5.“端午节”放假后,刘主任从七年级650名学生中随机抽查了其中50名学生的作业,发现其中有5名学生的作业不合格,下面判断正确的是( )
A.刘主任采用全面调查方式 B.个体是每名学生
C.样本容量是650 D.该初三学生约有65名学生的作业不合格
6.如图,CD∥AB,点F在AB上,EF⊥GF,F为垂足,
若∠1=48°,则∠2的度数为( )
A.42° B.45°
C.48° D.50°
7.下列各因式分解正确的是( )
A.4a2+6ab=a(4a+6b) B.x2-(-2)2=(x+2)(x-2)
C.x2+2x-1=(x-1)2 D.x2-2x+3=(x+3)(x-1)
8.下列分式是最简分式的是( )
A. B. C. D.
9.如图,能判定EB∥AC的条件是()
A.∠C=∠ABE
B.∠A=∠EBD
C.∠C=∠ABC
D.∠A=∠ABE
10.为了积极响应创建“美丽的乡村”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四个等级.从中随机抽取了部分学生的成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据统计图提供的信息,以下说法不正确的是( )
A.样本容量为200 B.D等所在扇形的圆心角为15°
C.样本中C等所占百分比是10% D.估计全校学生成绩为A等大约有900分
二、细心填一填(本题共8小题,每小题3分,共24分)
11.计算:(-2ab2)2• =
12.定义运算:a⊕b=(a+b)(b-2),下面给出这种运算的四个结论:①3⊕4=14;②a⊕b=b⊕a;③若a⊕b=0,则a+b=0;④若a+b=0,则a⊕b=0.其中正确的结论序号为___________.(把所有正确结论的序号都填在横线上)
13.化简分式: ÷ × =_____________.
14.如图,已知∠1=122°,∠2=122°,∠3=73°,
则∠4的度数为__________度.
15.如果关于x的方程 - =1无解,那么a的值必为_________.
16.二元一次方程2x+3y=20的所有正整数解是_________________________.
17.如图,长方形ABCD中,AB=5cm,AD=8cm.现将该
长方形沿BC方向平移,得到长方形A1B1C1D1,若
重叠部分A1B1CD的面积为35cm2,则长方形ABCD
向右平移的距离为______cm.
18.国庆假日里小明原计划在规定时间内看完一本共有480页的小说,但由于这本书的故事情节精彩,小明每天多看了20页,这样到规定时间还多看了一本120页的中篇小说,如果小明原计划每天看x页,那么可列方程为_____________________________.
三、解答题(本题共8小题,第19、20每小题各8分;第21、22每小题各6分;第23、24每小题各8分;第25题10分,第26小题12分,共66分)
19.(1)已知:多项式A=(x+2)2+(1-x)(2+x)-3.若(x+1)2=2,求A的值.
(2)先化简,再求值:1- ÷ ,其中x=1,y=-2.
20.解下列方程(组)
(1)1+ = (2) (用代入法解)
21.某中学七年级共有12个班,每班48名学生,该校在2015年春学期期中考试结束后,想了解七年级数学考试情况,对期中考试数学成绩进行抽样分析.
(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法:①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各随机抽取4名学生,④在七年级前6个班中随机抽取48名学生,其中比较合理的抽样方法是________.(填序号)
(2)将抽取的48名学生的成绩进行分组,绘制了如下频数统计表和扇形统计图:
七年级学生期中考试数学成绩频数统计表 七年级学生期中考试数学成绩扇形统计图
请根据图表中数据解答下列问题:
①求C类的频率和D类部分的圆心角的度数;
②估计全年级达A、B类学生大约共有多少名学生.
22.将方格纸中的三角形ABC先向右平移2格得到三角形DEF,再将三角形DEF向上平移3格得到三角形GPH,
(1)动手操作:按上面步骤作出经过两次平移后分别到到的三角形;
(2)填空:图中与AC既平行又相等的线段有________________,图中有______个平行四边形?
(3)线段AD与BF是什么位置关系和数量关系?
23.观察下列版式:
①1×3-22=3-4=-2;
②2×4-32=8-9=-1;
③3×5-42=15-16=-1
④__________________________ …
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写的式子成立吗?并说明理由.
24.如图,将长方形纸条沿CE折叠(CE为折痕),使点B与点F重合,EG平分∠AEF交AD于G,HG⊥EG,垂足为点G,试说明HG∥CE.
25.某体育用品商场在省运会期间用32000元购进了一批运动服,上市后很快售完,商场又用68000元购进第二批同样运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润达到20%,那么每套售价应定为多少元?(利润率= )
26.某旅行社拟在暑假期间推出“两日游”活动,收费标准如下:
人数m 0 200
收费标准 180 170 150
甲、乙两所学校计划组织本校学生自愿参加此项活动,已知甲校报名参加的学生人数多于120人,乙校报名参加的学生人数少于120人,经核算,若两校分别组团共需花费41600元,若两校联合组团只需花费36000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?
七年级数学下册期末测试题参考答案
一、精心选一选(本题共10小题,每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 C A A D D A B B D B
二、细心填一填(本题共8小题,每小题3分,共24分)
11. 3a4b5; 12. ①④;
13. - ; 14. 107;
15. -2; 16. , ,
17. 1; 18. = .
三、解答题(本题共8小题,第19、20每小题各8分;第21、22每小题各6分;第23、24每小题各8分;第25题10分,第26小题12分,共66分)
19.解:(1)A=(x+2)2+(1-x)(2+x)-3
=x2+4x+4+2+x-2x-x2-3
=3x+3
=3(x+1)
∵(x+1)2=2,
∴x+1= 或x+1=- ,
∴当x+1= 时,A=3× =3 ,
当x+1=- 时,A=3×(- )=-3 ,
故A的值为±3 .
(2)1- ÷
=1- ×
=1-
=
当x=1,y=-2时,原式= =3.
20.解:(1)原方程可化为:1+ = ,
把方程两边都乘以2(x-2),得:2(x-2)+2(1-x)=x,
去括号,得:2x-4+2-2x=x,
移项,合并同类项得:-x=2,
解得:x=-2,
检验:当x=-2时,2(x-2)≠0,
∴x=-2是原分式方程的解,
故原方程的解为x=-2.
(2)由②得:y=4x-13③,
把③代①得:3x+2(4x-13)=7,
解这个方程,得:x=3,
把x=3代入③得:y=4×3-13=-1,
∴原方程组的解为: .
21.解:(1)②③;
(2)① = ,360°× =30°,
答:C类的频率为 ,D类部分的圆心角的度数为30°;
②48×12×(50%+25%)=432(人),
答:估计全年级达A、B类学生大约共有432名学生.
22. 解:(1)所作图形如右下图;
(2)与AC既平行又相等的线段有DF、GH,图中有2个平行四边形;
(3)线段AD与BF的位置关系是平行,数量关系是AD= BF.
23.解:(1)4×6-52=24-25=-1;
(2)答案不唯一,如n(n+2)-(n+1)2=-1;
(3)成立,理由如下:
∵n(n+2)-(n+1)2=n2+2n-(n2+2n+1)=n2+2n-n2-2n-1=-1,
∴一定成立.
24.解:理由:由折叠性质可得:∠CEF=∠BEC= ∠BEF,
∵EG平分∠AEF(已知),
∴∠GEF=∠AEG= ∠AEF(角平分线的定义),
∴∠CEF+∠GEF= ∠AEF+ ∠BEF= (∠AEF+∠BEF)(等式的性质),
∵∠AEF+∠BEF=180°(平角定义)
∴∠CEF+∠GEF= ×180°=90°,
即∠GEC=90°,
∵HG⊥EG(已知),
∴∠EGH=90°(垂直定义)
∴∠GEC+∠EGH=180°(等式的性质),
∴HG∥CE(同旁内角互补,两直线平行).
25.解:(1)设商场每一次购进x套这种运动服,则第二次购进2x套,
由题意,得: - =10,
解这个方程,得:x=200,
经检验:x=200是原方程的解,
2x+x=2×200+200=600(套),
答:商场两次共购进这种运动服600套;
(2)设每套运动服的售价为y元,由题意,得:
=20%,
解这个方程,得:y=200,
答:每套运动服的售价应定为200元.
26.解:(1)设甲、乙两校参加学生人数之和为a,
若a>200,则a=36000÷150=240(人),
若120
∴两所学校报名参加旅游的学生人数之和等于240人,超过200人;
(2)设甲学校报名参加旅游的学生人数有x人,乙学校报名参加旅游的学生有y人,则:
①当120
解得: ,
②当x>200时,由题意,得: ,
解得: ,此解是不合题意的,应舍去,
知识有重量,但成就有光泽。有人感觉到知识的力量,但更多的人只看到成就的光泽。下面给大家分享一些关于七年级下册数学试卷及答案,希望对大家有所帮助。
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)下列各数: 、 、0.101001…(中间0依次递增)、﹣π、 是无理数的有()
A. 1个 B. 2个 C. 3个 D. 4个
考点: 无理数.
分析: 根据无理数的定义(无理数是指无限不循环小数)判断即可.
解答: 解:无理数有 ,0.101001…(中间0依次递增),﹣π,共3个,
故选C.
点评: 考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.
2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于()
A. 110° B. 70° C. 55° D. 35°
考点: 平行线的性质;角平分线的定义.
专题: 计算题.
分析: 本题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进行做题.
解答: 解:∵AB∥CD,
根据两直线平行,同旁内角互补.得:
∴∠ACD=180°﹣∠A=70°.
再根据角平分线的定义,得:∠ECD= ∠ACD=35°.
故选D.
点评: 考查了平行线的性质以及角平分线的概念.
3.(3分)下列调查中,适宜采用全面调查方式的是()
A. 了解我市的空气污染情况
B. 了解电视节目《焦点访谈》的收视率
C. 了解七(6)班每个同学每天做家庭作业的时间
D. 考查某工厂生产的一批手表的防水性能
考点: 全面调查与抽样调查.
分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
解答: 解:A、不能全面调查,只能抽查;
B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;
C、人数不多,容易调查,适合全面调查;
D、数量较大,适合抽查.
故选C.
点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4.(3分)一元一次不等式组 的解集在数轴上表示为()
A. B. C. D.
考点: 在数轴上表示不等式的解集;解一元一次不等式组.
分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
解答: 解: ,由①得,x<2,由②得,x≥0,
故此不等式组的解集为:0≤x<2,
在数轴上表示为:
故选B.
点评: 本题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5.(3分)二元一次方程2x+y=8的正整数解有()
A. 2个 B. 3个 C. 4个 D. 5个
考点: 解二元一次方程.
专题: 计算题.
分析: 将x=1,2,3,…,代入方程求出y的值为正整数即可.
解答: 解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;
则方程的正整数解有3个.
故选B
点评: 此题考查了解二元一次方程,注意x与y都为正整数.
6.(3分)若点P(x,y)满足xy<0,x<0,则P点在()
A. 第二象限 B. 第三象限 C. 第四象限 D. 第二、四象限
考点: 点的坐标.
分析: 根据实数的性质得到y>0,然后根据第二象限内点的坐标特征进行判断.
解答: 解:∵xy<0,x<0,
∴y>0,
∴点P在第二象限.
故选A.
点评:本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是()
A. 10° B. 20° C. 35° D. 55°
考点: 平行线的性质.
分析: 过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.
解答: 解:过E作EF∥AB,
∵∠A=125°,∠C=145°,
∴∠AEF=180°﹣∠A=180°﹣125°=55°,
∠CEF=180°﹣∠C=180°﹣145°=35°,
∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.
故选B.
点评: 本题考查了平行线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.
8.(3分)已知 是方程组 的解,则 是下列哪个方程的解()
A. 2x﹣y=1 B. 5x+2y=﹣4 C. 3x+2y=5 D. 以上都不是
考点: 二元一次方程组的解;二元一次方程的解.
专题: 计算题.
分析: 将x=2,y=1代入方程组中,求出a与b的值,即可做出判断.
解答: 解:将 方程组 得:a=2,b=3,
将x=2,y=3代入2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,
∴ 是方程2x﹣y=1的解,
故选A.
点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
9.(3分)下列各式不一定成立的是()
A. B. C. D.
考点: 立方根;算术平方根.
分析: 根据立方根,平方根的定义判断即可.
解答: 解:A、a为任何数时,等式都成立,正确,故本选项错误;
B、a为任何数时,等式都成立,正确,故本选项错误;
C、原式中隐含条件a≥0,等式成立,正确,故本选项错误;
D、当a<0时,等式不成立,错误,故本选项正确;
故选D.
点评: 本题考查了立方根和平方根的应用,注意:当a≥0时, =a,任何数都有立方根
10.(3分)若不等式组 的整数解共有三个,则a的取值范围是()