关于数学方面的论文?那么,关于数学方面的论文?一起来了解一下吧。
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
数学发展到现代,分裂为两个方向,纯粹数学和应用数学。弗雷格是前者的代表人物。之前的数学的任务是计算,通过计算来解决问题,到了19世纪,随着数学抽象程度的增加,数学的任务变成了理解。当然这只是数学发展的一个方向,即纯粹数学的方向;之后,一般人不再弄得懂专业的数学,而数学的堂奥之处留给了专家。弗雷格要解决的问题是,从逻辑中推出数学,即给数学一个稳固的基础。他认为,“许多过去被看做是不证自明的东西,现在都需要证明。” 数学也是如此。凡是可以证明的地方,就必须通过证明而不是归纳来确证。弗雷格给自己的任务是,给数下一个定义,尽管过去人们以为它是不可定义的。康德认为,数学命题是先天综合命题。而弗雷格不这么认为,他指出,数学是分析命题。但是他同时认为,康德关于分析与综合的区分不足以穷尽所有命题。因为,可以找出一个句子,它并不包含在任何个别的定义之中,却可以从所有定义中逻辑地推出。那它就既不是分析判断也不是综合判断。事实上,康德低估了分析判断的价值,它并非不告诉我们什么。在这个意义上,数学是分析命题。下面简单地谈一下弗雷格的正面立论。他认为,每个个别的数都是一个独立的对象。首先,他说明了数的给出包含着对一个概念的陈述。在“0这个数属于F这个概念”这个句子中,如果我们把F这个概念看成实实在在的主词,那么0只是谓词的一部分。如果把0、1、2这样的数看做概念的性质可能会改变它的意谓。比如在“木星有四颗卫星”这一描述中,“四”表面上是作为定语,事实上,更为准确的描述是“木星的卫星数是四”。这里,“是”的含义是“是与……相等”、“是与……同一”。这种等式形式是算术中的主要形式。所以,个别的数表现为独立的对象。然而,这种想法的困难是我们无法对数形成表象。弗雷格的反驳是,我们同样也无法形成我们与太阳的距离的表象,但这并不说明发现这一距离所依据的计算的正确性是不可靠的。当然,这一类比式的反驳可能没有那么大的说服力。弗雷格进一步指出,“通过思维我们甚至常常超出可以形成表象的东西之外,而不因此失去我们推论的基础。” 因此,表象与被思考的东西之间的联系可以是完全表面的,任意的和依据习惯的。就算我们无法对一个词的内涵形成表象,但这并非否定一个词的意谓。事实上,只有在完整的句子中词才有意谓,而数的独立性并不意谓数词脱离句子联系而表示某种东西。“如果句子作为整体有一个意义,就足够了;这样句子的诸部分也就得到它们的内涵。” 最后,弗雷格指出,认为数不是一个空间对象,这并不表明它不是一个对象。并非每个客观的对象都有一个空间位置。总之,他试图表明,数作为独立的对象是可能的。这是他关于数的定义的一个初始的考虑。弗雷格的策略是对数本身的一种拯救。当先贤们把数抛入世界之中,数总是与世界纠缠在一起。特别是到了康德,数开始和人类认识世界的能力打交道。弗雷格所做的工作是证明数的独立性,数可以成为一个对象,尽管它和别的对象不大一样。尽管数可以成为世界中的秩序或规律,但它不必然如此。所以,弗雷格为数找到了它自己的居所(尽管不是空间)。
六年级数学小论文(我们生活中的数学)
"数学来源于生活,也服务于生活。"下面是我的一些亲身经历,它都证明了这是条真理。
有一次,我和妈妈一起去超市购物,妈妈说:"要有计划地把这些购物券用完,所以每买一件东西都要算一算用了多少钱",当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑,因此我也就成为了妈妈的"小会计"。
在我们的生活中还有许多平面图形和立体图形。我家的桌子的面是正方形,钟的面是正方形,我家的床面是长方形,门的面也是长方形,我们用的三角板是三角形的…… 冰箱是长方体,牙膏盒是长方体,我家的电脑外包装箱是一个正方体……现在我已经学会了计算各种平面图形的面积,也学会了长方体、正方体的表面积的体积的有关计算,还能灵活地运用,解决我们生活中的实际问题。
比如:上星期,妈妈带我们去郑州的一个游泳馆,妈妈说:"小语,你现在已经上五年级了,看我们面前的这个游泳池,你知道这个池内贴瓷片的面积和它能容纳多少水吗?"我得意地说:"这个当然没有问题,其实就是计算它的表面积和容积,需要知道它们的长、宽和高。首先,我来解决第一个问题,就是求它的表面积,我们要特别注意一个问题:这个游泳池没有上面,也就是要求5个面的总面积,就是用长×宽+(长×高+宽×高)×2,求出来的就是这个游泳池的表面积,最后要用面积单位;第二个问题是求它的容积,是用它的长×宽×高,但注意最后要用体积单位。"我讲得津津有味,似乎有点我们老师的味道,想着想着我就更加得意了。站在一旁的爸爸和妈妈都夸我讲得好,这时别提我有多高兴了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
怎么样,数学是不是很重要? 所以,我要提醒你一定要学好数学哦!
你是只要定题目吗?如果只定题目可以参才下面几个,详情也可以进入网站查看。
改进的真分数分拆的充要条件及广泛应用[数学与应用数学专业]
http://www.maomaoxue.com/soft/sort01/information-855.html
一类线性矩阵方程的可解性及迭代解法(数学与应用数学专业)
http://www.maomaoxue.com/soft/sort09/information-809.html
小议数学中的类比思想[数学与应用数学]
http://www.maomaoxue.com/soft/sort09/information-1885.html
一类二元二次样条函数的lagrange插值[数学与应用数学]
http://www.maomaoxue.com/soft/sort09/information-1884.html
更多数学论文资料,请进入网站看在关键字查找的地方输入“数字”即可。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
以上就是关于数学方面的论文的全部内容,.。