当前位置: 首页 > 所有学科 > 数学

初一数学二元一次方程,小学x方程式怎么解

  • 数学
  • 2024-12-19

初一数学二元一次方程?二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程。二元一次方程组的解:两个二元一次方程的公共解,叫做二元一次方程组的解。二元一次方程组的解,那么,初一数学二元一次方程?一起来了解一下吧。

一元一次方程60道过程及答案

将实心方块用a代替,实心三角形用b代替

把x=2,y=1代入方程组中,得

2*2+a*1=3, b*2+1=3

即 4+a=3, 2b+1=3

解得,a=-1,b=1

所以,原方程组为2x-y=3

x+y=3

(写解答时可以不用a、b代替,直接用图形)

一元一次方程ppt课件免费

解:

设牛为X羊为Y。

5x+3y=17①

4x+2y=13②

①-②=5x+3y-(4x+2y)=x+y=17-13=4

x+y=4③

②-2*③=4x+2y-2x-2y=2x=5

x=2.5

y=1.5

二元一次方程经典40题

例如:x+y=71式

3x+y=172式

由1式得:

x=7-y

把1式代入2式:

3(7-y)+y=17

21-3y+y=17

-3y+y=17-21

-2y=-4

y=2

把y=2代入1式

x+2=7

x=7-2x=5

x=5 所以

y=2

初一数学二元一次方程教学视频

已知x=2,y=1

2x+?y=3

?y=3-2x

?y=-1

?=-1÷y

?=-1÷1

?=-1

?x+y=3

?x=3-1

?x=2

?=2÷x

?=2÷2

?=1

初一一元一次解方程100道及答案

初一数学(下)应知应会的知识点

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0 ,(a≠0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab>0或 ;

ab<0  或 ;ab=0  a=0或b=0;a=m .

7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.

8.一元一次不等式组的解集的四种类型:设 a>b

9.几个重要的判断: , ,

整式的乘除

1.同底数幂的乘法:am•an=am+n ,底数不变,指数相加.

2.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积.

3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.

4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.

5.多项式的乘法:(a+b)•(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.

6.乘法公式:

(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

(2)完全平方公式:

① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

※③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.

7.配方:

(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k

①可以判断ax2+bx+c值的符号; ②当x=h时,可求出ax2+bx+c的最大(或最小)值k.

※(3)注意: .

8.同底数幂的除法:am÷an=am-n ,底数不变,指数相减.

9.零指数与负指数公式:

(1)a0=1 (a≠0); a-n= ,(a≠0).注意:00,0-2无意义;

(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .

10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.

11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.

※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式•商式.

13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.

线段、角、相交线与平行线

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1. 角平分线的定义:

一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)

几何表达式举例:

(1) ∵OC平分∠AOB

∴∠AOC=∠BOC

(2) ∵∠AOC=∠BOC

∴OC是∠AOB的平分线

2.线段中点的定义:

点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)

几何表达式举例:

(1) ∵C是AB中点

∴ AC = BC

(2) ∵AC = BC

∴C是AB中点

3.等量公理:(如图)

(1)等量加等量和相等;(2)等量减等量差相等;

(3)等量的等倍量相等;(4)等量的等分量相等.

(1)(2)

(3)

(4) 几何表达式举例:

(1) ∵AC=DB

∴AC+CD=DB+CD

即AD=BC

(2) ∵∠AOC=∠DOB

∴∠AOC-∠BOC=∠DOB-∠BOC

即∠AOB=∠DOC

(3) ∵∠BOC=∠GFM

又∵∠AOB=2∠BOC

∠EFG=2∠GFM

∴∠AOB=∠EFG

(4) ∵AC= AB ,EG= EF

又∵AB=EF

∴AC=EG

4.等量代换: 几何表达式举例:

∵a=c

b=c

∴a=b 几何表达式举例:

∵a=c b=d

又∵c=d

∴a=b 几何表达式举例:

∵a=c+d

b=c+d

∴a=b

5.补角重要性质:

同角或等角的补角相等.(如图)

几何表达式举例:

∵∠1+∠3=180°

∠2+∠4=180°

又∵∠3=∠4

∴∠1=∠2

6.余角重要性质:

同角或等角的余角相等.(如图)

几何表达式举例:

∵∠1+∠3=90°

∠2+∠4=90°

又∵∠3=∠4

∴∠1=∠2

7.对顶角性质定理:

对顶角相等.(如图)

几何表达式举例:

∵∠AOC=∠DOB

∴ ……………

8.两条直线垂直的定义:

两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)

几何表达式举例:

(1) ∵AB、CD互相垂直

∴∠COB=90°

(2) ∵∠COB=90°

∴AB、CD互相垂直

9.三直线平行定理:

两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)

几何表达式举例:

∵AB∥EF

又∵CD∥EF

∴AB∥CD

10.平行线判定定理:

两条直线被第三条直线所截:

(1)若同位角相等,两条直线平行;(如图)

(2)若内错角相等,两条直线平行;(如图)

(3)若同旁内角互补,两条直线平行.(如图)

几何表达式举例:

(1) ∵∠GEB=∠EFD

∴ AB∥CD

(2) ∵∠AEF=∠DFE

∴ AB∥CD

(3) ∵∠BEF+∠DFE=180°

∴ AB∥CD

11.平行线性质定理:

(1)两条平行线被第三条直线所截,同位角相等;(如图)

(2)两条平行线被第三条直线所截,内错角相等;(如图)

(3)两条平行线被第三条直线所截,同旁内角互补.(如图)

几何表达式举例:

(1) ∵AB∥CD

∴∠GEB=∠EFD

(2) ∵AB∥CD

∴∠AEF=∠DFE

(3) ∵AB∥CD

∴∠BEF+∠DFE=180°

几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

一基本概念:

直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.

二定理:

1.直线公理:过两点有且只有一条直线.

2.线段公理:两点之间线段最短.

3.有关垂线的定理:

(1)过一点有且只有一条直线与已知直线垂直;

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

三 公式:

直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.

四 常识:

1.定义有双向性,定理没有.

2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.

3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论.

4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.

5.数射线、线段、角的个数时,应该按顺序数,或分类数.

6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.

7.方向角:

(1) (2)

8.比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.

9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.

以上就是初一数学二元一次方程的全部内容,1、5X+3Y=17 4X+2Y=13 解得:X=2.5 Y=1.5 2、甲定价:X*0.5+X=1.5X 乙定价:Y*0.4+Y=1.4Y X+Y=500 1.5X*0.9+1.4Y*0.9=500+157 解得:X=200 Y=300 3、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢