目录人教版初三数学模板教案 人教版九年级数学教学设计 初三数学教案20篇 初三数学教案人教版 九年级人教版数学教案
一元二次方程的应用
第一课时
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办源衫毁法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一)设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二)设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时。
答:两个奇数分别为17,19;塌则或者-19,-17。
解法(三)设较小的奇数为,则另一个奇数为。
据题意,得
整理后,得
解得,,或。
当时。
当时。
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3.选出三种方法中最简单的一种。
练习1.两个连续整数的积是210,求这两个数。
2.三个连续奇数的和是321,求这三个数。
3.已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。
例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数十位数字个位数字。
三位数百位数字十位数字个位数字。
解:设个位数字为x,则十位数字为,这个两位数是。
据题意,得,
整理,得,
解这个方程,得(不合题意,舍去)
当时,
答:这个两位数是24。
以上分析,解答,教师引导,板书,学生回答,体会,评价。
注意:在求得解之后,要进行实际题意的检验。
练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)
教师引导,启发,学生笔答,板书,评价,体会。
四、布置作业
教材P42A1、2
补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
五、板书设计
探究活动
将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价雹备1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
参考答案:
精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000
当时,50+=60,500=400
当时,50+=80,500=200
所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1.教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,数盯初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150)
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程薯册和我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止姿运我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0
(4)4x2十3x—2=0;(5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.
课外作业:略
正弦和余弦(一)
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻竖扮边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并歼芹计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思氏纤毕维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
第十四章解直角三角形
一、锐角三角函数 证明:------------------
结论:--------------------
练习:---------------------
正弦和余弦(二)
一、素质教育目标
(一)知识教学点
使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.
(二)能力训练点
逐步培养学生观察、比较、分析、概括的思维能力.
(三)德育渗透点
渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.
二、教学重点、难点
1.教学重点:使学生了解正弦、余弦概念.
2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.
三、教学步骤
(一)明确目标
1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”
2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.
(二)整体感知
只要知道三角形任一边长,其他两边就可知.
而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.
通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.
(三)重点、难点的学习与目标完成过程
正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.
在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:
请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.
若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则
引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.
教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.
例1求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.
学生练习1中1、2、3.
让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.
例2求下列各式的值:
为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:
(1)sin45°+cos45; (2)sin30°•cos60°;
在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.
(四)总结、扩展
首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即
0<sinA<1, 0<cosA<1(∠A为锐角).
还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”
四、布置作业
教材习题14.1中A组3.
预习下一课内容.
五、板书设计
14.1正弦和余弦(二)
一、概念:三、例1---------- 四、特殊角的正余弦值
------------- ------------------------------------------
二、范围:------------------五、例2 ------------
正弦和余弦(三)
一、素质教育目标
(一)知识教学点
使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.
(二)能力训练点
逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.
(三)德育渗透点
培养学生独立思考、勇于创新的精神.
二、教学重点、难点
1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.
三、教学步骤
(一)明确目标
1.复习提问
(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.
(二)、整体感知
关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.
(三)重点、难点的学习和目标完成过程
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.
3.教师板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.
已知∠A和∠B都是锐角,
(1)把cos(90°-A)写成∠A的正弦.
(2)把sin(90°-A)写成∠A的余弦.
这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:
(2)已知sin35°=0.5736,则cos______=0.5736.
(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.
为了配合例3的教学,教材中配备了练习题2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.
教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.
(四)小结与扩展
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.
2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.
四、布置作业
教材习题14.1A组4、5.
五、板书设计
14.1正弦和余弦(三)
一、余角余函数关系 二、例3
-------------------------------------------------------
---------------------------------- -------------------------------
正弦和余弦(四)
一、素质教育目标
(一)知识教学点
使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点
逐步培养学生观察、比较、分析、概括等逻辑思维能力.
(三)德育训练点
培养学生良好的学习习惯.
二、教学重点、难点
1.重点:“正弦和余弦表”的查法.
2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.
三、教学步骤
(一)明确目标
1.复习提问
1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.
2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.
(二)整体感知
我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.
(三)重点、难点的学习与目标完成过程
1.“正弦和余弦表”简介
学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.
(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.
2)表中角精确到1′,正弦、余弦值有四位有效数字.
3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.
2.举例说明
例4查表求37°24′的正弦值.
学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.
例5查表求37°26′的正弦值.
学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).
解:sin37°24′=0.6074.
角度增2′ 值增0.0005
sin37°26′=0.6079.
例6查表求sin37°23′的值.
如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.
解:sin37°24′=0.6074
角度减1′值减0.0002
sin37°23′=0.6072.
在查表中,还应引导学生查得:
sin0°=0,sin90°=1.
根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.
可引导学生查得:
cos0°=1,cos90°=0.
根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.
(四)总结与扩展
1.请学生总结
本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.
2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.
四、布置作业
预习教材中例8、例9、例10,养成良好的学习习惯.
五、板书设计
14.1 正弦和余弦(四)
一、正余弦值随角度变二、例题 例5 例6
化规律例4
---------------
正弦和余弦(五)
一、素质教育目标
(一)知识教学点
使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点
逐步培养学生观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
培养学生良好的学习习惯.
二、教学重点、难点和疑点
1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.
2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.
3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.
三、教学步骤
(一)明确目标
1.锐角的正弦值与余弦值随角度变化的规律是什么?
这一规律也是本课查表的依据,因此课前还得引导学生回忆.
答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).
2.若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,
cos21°28′=______.
3.不查表,比较大小:
(1)sin20°______sin20°15′;
(2)cos51°______cos50°10′;
(3)sin21°______cos68°.
学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.
3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.
(二)整体感知
已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.
(三)重点、难点的学习与目标完成过程.
例8已知sinA=0.2974,求锐角A.
学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.
解:查表得sin17°18′=0.2974,所以
锐角A=17°18′.
例9已知cosA=0.7857,求锐角A.
分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.
若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.
解:查表得cos38°12′=0.7859,所以:
0.7859=cos38°12′.
值减0.0002角度增1′
0.7857=cos38°13′,
即锐角A=38°13′.
例10已知cosB=0.4511,求锐角B.
例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.
解:0.4509=cos63°12′
值增0.0003角度减1′
0.4512=cos63°11′
∴锐角B=63°11′
为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.
2.已知下列正弦值或余弦值,求锐角A或B:
(1)sinA=0.7083,sinB=0.9371,
sinA=0.3526,sinB=0.5688;
(2)cosA=0.8290,cosB=0.7611,
cosA=0.2996,cosB=0.9931.
此题是配合例题而设置的,要求学生能快速准确得到答案.
(1)45°6′,69°34′,20°39′,34°40′;
(2)34°0′,40°26′,72°34′,6°44′.
3.查表求sin57°与cos33°,所得的值有什么关系?
此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).
(四)、总结、扩展
本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.
四、布置作业
教材复习题十四A组3、4,要求学生只查正、余弦。
五、板书设计
14.1 正弦和余弦(五)
例8 例9例10
一、教材分析
1、教材的地位和作用
二次函数是在学生学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。
2、教学的重点和难点
教学重点:使学生掌握二次函数的概念、性质和图象;从函数的性质推断图象的方法。
教学难点:掌握从函数的性质推断图象的方法。
二、目标分析
按照新课标指出三维目标,根据任教班级学生的实际情况,本节课我确定的教学目标是:
1、知识与技能:掌握二次函数的性质与图象,能够借助于具体的二次函数,理解和掌握从函数的性质推断图象的方研究法。
2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,掌握从函数解析式、性质出发去认识函数图象的高度理解和研究函数的方法。
3、情感、态度、价值观:让学生感受数学思想方法之美、体会数学思想方法之重要;培养学世配生主动学习、合作交流的意识等。
三、教法学法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,从教师的角色突出体现教师是设计者、组织者、引导者、合作者,经过教师对教材的分析理解,在教师的组织引导和师生互动过程中以问题为载体实施整个教学过程;在学生这方面,通过自主探索、合作交流、归纳方法等一系列活动为主线,感受知识的形成过程,拓展和完善自己的认知结构,进而体瞎盯现出教学过程中教师与学生的双主体作用。
四、教学过程分析
根据新课标的理念,我把整个的教学过程分为六个阶段,即:创设情景、提出问题
师生互动、探究新知
独立探究,巩固方法
强化训练,加深理解
小结归纳,拓展深化
布置作业,提高升华
环节1本节课一开始我就让学生直接总结出二次函数的性质与图象形状,在学生回答后,以有必要再重复吗?编者的失误?还是另有用意呢?的设问来激发学生的求知欲,在学生感觉很疑惑的时候马上进入环节2:试作出二次函数
的图象。目的是充分暴露学生在作图时不能很好的结合函数的性质而出现的错误或偏差问题,突出本节课的重要性。在学生总结交流的基础上教师指出搜神指学生的错误并以设问的方式提出本节课的目标:如何利用函数性质的研究来推断出较为准确的函数图象,进而引导学生进入师生互动、探究新知阶段。
在这个阶段,我引用课本所给的例题1请同学们以学习小组为单位尝试完成并作出总结发言。目的是:让学生充分参与,在合作探究中让学生最大限度地突破目标或暴露出在尝试研究过程中出现的分析障碍,即不能很好的把握函数的性质对图象的影响,不能把抽象的性质与直观的图象融会贯通,这样便于教师在与学生互动的过程中准确把握难点,各个击破,最终形成知识的迁移。在学生探讨后,教师选小组代表做总结发言,其他小组作出补充,教师引导从逐步完善函数性质的分析。其中,学生对于对称轴的确定、单调区间及单调性的分析阐述等可能存在困难。这时教师可以利用对解析式的分析结合多媒体演示引导学生得到分析的思路和解决的方法,在师生互动的过程中把函数的性质完善。之后进入环节3:再次让学生利用二次函数的性质推断出二次函数的图象,强化用二次函数的性质推断图象的关键。进而突破教学难点。让学生真正实现知识的迁移,完成整个探究过程,形成较为完整的新的认知体系.当然,在这个过程中可能会有学生提出图象为什么是曲线而不是直线等问题,为了消除学生的疑惑,进入第4个环节:教师要简单说明这是研究函数要考虑的一个重要的性质,是函数的凹凸性,后面我们将要给大家介绍,同学们可以阅读课本第110页的探索与研究。这样也给学生留下一个思考与探索的空间,培养学生课外阅读、自主研究的能力,增强学生学习数学的积极性.
在以上环节完成后,进入第5个环节:让学生对利用解析式分析性质然后推断函数图象的研究过程进行梳理并加以提炼、抽象、概括,得出研究函数的具体操作过程,使问题得以升华,拓宽学生的思维,将新知识内化到自己的认知结构中去.最终寻求到解决问题的方法。
教学的最终目标应该落实到每一个学生个体的内化与发展,由此让引导学生进入独立探究,巩固方法的阶段。例2在题目的设置上变换二次函数的开口方向,目的是一方面使学生加深对知识的理解,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.学生在例1的基础上将会目标明确地进行函数性质的研究,然后推断出比较准确的函数图象,使新知得到有效巩固.
通过前面三个阶段的学习,学生应该基本掌握了本节课的相关知识。但对二次函数中系数a、b、c的对二次函数的影响还有待提高,为此我把课本中的例3进行改编,引导学生进入强化训练,加深理解阶段。一方面可以解决学生对奇偶性的质疑,另一方面也可以把学生对二次函数的认识提到新的高度。
第五个阶段:小结归纳,拓展深化。为了让学生能够站在更高的角度认识二次函数和掌握函数的一般研究方法,教师引导学生从两个方面总结。在你对函数图象与性质的关系有怎样的理解方面教师要引导、拓展,明确今天所学习的方法实际上是研究函数性质图象的一般方法,对于一些陌生的或较为复杂的函数只要借助于适当的方法得到相关的性质就可以推断出函数的图象,从而把学生的认知水平定格在一个新的高度去理解和认识函数问题。
最后一个阶段是布置作业,提高升华,作业的设置是分层落实.巩固题让学生复习解题思路,准确应用,以便举一反三.探究题通过对教材例题的改编,供学有余力的学生自主探索,提高他们分析问题、解决问题的能力.
以上六个阶段环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的形成和发展过程,并得以迁移内化。而最终的探究作业又将激发学生兴趣,带领学生进入对二次函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。总之,这节课是本着“授之以渔”而非“授之以鱼”的理念来设计的。
九年级数学锐角三角函数教案5篇
九年级数学老师要全面培养学生,激发学生对数学学习的兴趣,开展素质教育,从课堂走进生活。所有的九年级数学老师都必须知道如何写九年级数学教案,你也来写一篇和我们分享吧。你是否在找正准备撰写“九年级数学锐角三角函数教案”,下面我收集了相关的素材,供大家写文参考!
九年级数学锐角三角函数教案篇1
二次根式的乘除法
教学目标
1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。
2、使学生了解纳型两个二次根式的商仍然是一个二次根式或有理式。
3、使学生会将分母中含有一洞并猜个二次根式的式子进行分母有理化。
4、经历探索二次根式的除法运算法则过程,培养学生的探究精神和合作交流的习惯。
教学过程
一、创设问题情境
问题l 上一节课,我们采取什么方法来研究二次根式的乘法法则?
问题2 是否也有二次根式的除法法则呢?
问题2 两个二次根式相除,怎样进行呢?
二、加强合作蔽知,探索规律
让抽象的问题具体化,这是我们研究抽象问题的一个重要方法、请同学们参考二次根式的乘法法则的研究,分组讨论两个二次根式相除,会有什么结论,并提出你的见解,然后其他小组同学补充,归纳为:
提问:
1、a和b有没有限制?如果有限制,其取值范围是什么?
2、= (a≥0,b>0)成立吗?为什么?请举例。
三、范例
例1、计算。
教学要求:(1)对于(1)可由教师解答示范;(2)对于(2)可由学生自己计算。
提问:
1、除了课本中的解答外,是否还有其他解法?如果有,请给出另外解法。
2、哪种方法更简便?
例2、化简:(要求分母不带根号)
说明:二次根式的化简要求满足以下两条:
(1)被开方数的因数是整数,因式是整式,也就是说“被开方数不含分母”。
(2)被开方数中不含能开得尽的因数或因式,也就是说“被开方数的每一个因数或因式的指数都小于2”。
把一个二次根式化简的具体方法是:化去根号下的分母;并把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外面。
四、做一做
化简:
教学要点:(1)叫两位同学板演,其他同学做完练习进行评价、(2)可用提问的方式引导学生探索其他解法。
五、课堂练习
P12 练习1、(3)、(4)
六、小结
本节课,我们学习了二次根式的除法法则,即= (a≥0,b>0),并利用它进行计算和化简。化简要做到“被开方数不含分母”和“被开方数的每一个因数或因式的指数都小于2”。具体办法是:化去根号下的分母;并把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外面、化简的具体方法可用于计算。
七、作业
P14页习题22.2 2(3)、3(3)
教学后记:
九年级数学锐角三角函数教案篇2
配方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重难点关键
1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
教学过程
一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+____)2.
问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=--2
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1
分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±
即x+3=,x+3=-
所以,方程的两根x1=-3+,x2=-3-
例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材 练习.
四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?
分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.
解:设该公司二、三月份营业额平均增长率为x.
那么1+(1+x)+(1+x)2=3.31
把(1+x)当成一个数,配方得:
(1+x+)2=2.56,即(x+)2=2.56
x+=±1.6,即x+=1.6,x+=-1.6
方程的根为x1=10%,x2=-3.1
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%.
五、归纳小结
本节课应掌握: 由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解
六、布置作业
1.教材 复习巩固1、2.
九年级数学锐角三角函数教案篇3
垂直于弦的直径
理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.
通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.
重点
垂径定理及其运用.
难点
探索并证明垂径定理及利用垂径定理解决一些实际问题.
一、复习引入
①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫 做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
②连接圆上任意两点的线段叫做弦,如图线段AC,AB;
③经过圆心的弦叫做直径,如图线段AB;
④圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作“︵AC”,读作“圆弧AC”或“弧AC”.大 于半圆的弧(如图所示︵ABC)叫做优弧,小于半圆的弧(如图所示︵AC或︵BC)叫做劣弧.
⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.
二、探索新知
(学生活动)请同学按要求完成下题:
如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.
(1)如图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?说一说你理由.
(老师点评)(1)是轴对称图形,其对称轴是CD.
(2)AM=BM,︵AC=︵BC,︵AD=︵BD,即直径CD平分弦AB,并且平分︵AB及︵ADB.
这样,我们就得到下面的定理:
垂直于弦的直径平分弦,并且平分弦所对的两条弧.
下面我们用逻辑思维给它证明一下:
已知:直径CD、弦AB,且CD⊥AB垂足为M.
求证:AM=BM,︵AC=︵BC,︵AD=︵BD.
分析:要证AM=BM,只要证AM,BM构成的两个三角形全等.因此,只要连接OA,OB或AC,BC即可.
证明:如图,连接OA,OB,则OA=OB,
在Rt△OAM和Rt△OBM中,
∴Rt△OAM≌Rt△OBM,
∴AM=BM,
∴点A和点B关于CD对称,
∵⊙O关于直径CD对称,
∴当圆沿着直线CD对折时,点A与点B重合,︵AC与︵BC重合,︵AD与︵BD重合.
∴︵AC=︵BC,︵AD=︵BD.
进一步,我们还可以得到结论:
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(本题的证明作为课后练习)
例1有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪 水泛滥时,水面宽MN=32 m时是否需要采取紧急措施?请说明理由.
分析:要求当洪水到来时,水面宽MN=32 m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然 后运用几何代数解求R.
解:不需要采取紧急措施,
设OA=R,在Rt△AOC中,AC=30,CD=18,
R2=302+(R-18)2,
R2=900+R2-36R+324,
解得R=34(m),
连接OM,设DE=x,在Rt△MOE中,ME=16,
342=162+(34-x)2,
162+342-68x+x2=342,x2-68x+256=0,
解得x1=4,x2=64(不合题意,舍去),
∴DE=4,
∴不需采取紧急措施.
三、课堂小结(学生归纳,老师点评)
垂径定理及其推论以及它们的应用.
四、作业布置
1.垂径定理推论的证明.
2.教材第89,90页习题第8,9,10题.
九年级数学锐角三角函数教案篇4
配方法的灵活运用
了解配方法的概念,掌握运用配方法解一元二次方程的步骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.
重点
讲清配方法的解题步骤.
难点
对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.
一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0(2)2x2-8x+1=0
老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:略.(2)与(1)有何关联?
二、探索新知
讨论:配方法解一元二次方程的一般步骤:
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±;如果q<0,方程无实根.
例1解下列方程:
(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.
解:略.
三、巩固练习
教材第9页练习2.(3)(4)(5)(6).
四、课堂小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.
五、作业布置
教材第17页复习巩固3.(3)(4).
补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.
(2) 求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.
九年级数学锐角三角函数教案篇5
二次根式的乘除法
教学目标
1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。
2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式.
3、培养学生合情推理能力。
教学过程
一、复习提问
1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?
2、二次根式有哪些性质?计算下列各题:
()2
二、提出问题,导入新知
1、试一试
计算: (1) _=( )=( )
=( )=( )
(2) _=( )=( )
=( )=( )
提问:观察以上计算结果,你能发现什么?
2、思考
_与是否相等?
提问:(1)你将用什么方法计算?
(2)通过计算,你发现了什么?是否与前面试一试的结果一样?
3、概括
让学生观察以上计算结果、归纳得出结论:_=(a≥0,b≥0)
注意,a,b必须都是非负数,上式才能成立。
三、举例应用
例1、计算。
__
说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。
等式_=(a≥0,b≥0),也可以写成=_(a≥0,b≥0)
利用它可以进行二次根式的化简,例如:=_==a2
例2、化简
说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。
四、课堂练习
1、计算下列各式,将所得结果化简:
_ _
2、P12页练习1(1)、(2)、2
五、想一想
1、__与是否相等?a、b、c有什么限制?请举一个例子加以说明。
2、等于__吗?
3、化简:
六、小结
这节课我们学习了以下知识:
1、二次根式的乘法运算法则,即_= (a≥0,b≥0)
2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a≥0,b≥0)……)
要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么?
3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a≥ 0),加深了对非负数a的算术平方根的性质的认识
七、作业
习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题