目录七年级上册数学动点题及答案 九年级上册数学题大全 九上数学压轴题及答案 九年级下册数学书答案 九年级数学计算题及答案解析
1.全卷共4页,有3大题,满分为150分。考试时间为120分钟。
2.全卷答案必须做在答题纸相应的位置上,做在试题卷上无效
3.请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核对答题纸上粘帖的条
形码的“姓名、准考证号”是否一致。
温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!
参考公式:二次函数y=ax2+bx+c的顶点坐标是
试 卷 Ⅰ
说明:本卷共有1大题,10小题,每小题4分,共40分.请用2B铅笔在“答题卷”上将你认为正确的选项对应的小方框涂黑,涂满.
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)
1. 计算-1+2的结果是
A. 1 B. -1 C. -2 D. 2
2. 2007年5月3日,中央电视台报道了一则激动人心的新闻,我国在渤海地区发现储量规模达10.2亿吨的南堡大油田,10.2亿吨用科学计数法表示为(单位:吨)
A B C D
3. 如图,已知圆心角∠BOC=100°、则圆周角∠BAC的大小是
A.50° B.100° C.130° D.200°
4. 下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是
A.圆柱 B.正方体 C.三棱柱 D.圆锥
5.“义乌•中国小商品城指数” 简称“义乌指数”。下图是2007年3月19日至2007年4月23日的“义乌指数”走势族伍洞图,下面关于该指数图的说法正确的是
A.4月2日的指数位图中的最高指数 B.4月23日的指数位图中的最低指数 C.3月19至4月23日指数节节攀升 D.4月9日的指数比3月26日的指数高
6.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加义乌市“文明劝导活动”。根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是
A. B. C. D.
7. 如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.
已知PE=3,则点P到AB的距离是
A.3 B.4 C.5 D.6
8. 在下列命题中,正确的是
A.一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形
C.有一组邻边相等的平行四边形是菱形 D.对角线互相垂直平分的四边形是正方形
9. 如图,AB‖CD,∠1=110°∠ECD=70°,∠E的大小是
A.30° B.40° C.50° D.60°
10.按下面的程序计算,若开始输入的值x为正数,最后输出的结果
为656,则满足条件的x的不同值最多有
A.2个 B.3个 C.4个 D.5个
试 卷 Ⅱ
说明:本卷共有2大题,14小题,共110分.答题请用0.5毫米级以上的黑色签字笔书写在“答题纸的相应位置上.
二、填空题 (本题有6小题,每题5分,共30分)
11.当x=2,代数式 的值为____▲___.
12.如图,在△ABC中,点D、E分别是边AB、AC的中点,
已知DE=6cm,则BC=___▲___cm.
13.已知反比橘庆例函数 的图象经过点P(a+1,4),则a=___▲___.
14. 已知 、 的圆心距 =5,当 与 相交时,则 的半径R=___▲___.
的半径r=___▲___.(写出一组满足题意的R与r的值即可)
15.袋中装有3个红球,1个白球它们除了颜色相同以外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后再随机摸出一球,两次都摸到红球的概率是___▲___.
16.如图所示,直线 ,垂足为点 ,A、B是直线
上的两点,且OB=2,AB= .直线 绕点 按
逆时针方向旋转,旋转角度为 ( ).
(1)当 =60°时,在直线 上找点P,使得△BPA
是以∠B为顶角的等腰三角形,此时OP=___▲___.
(2)当 在什么范围内变化时,直线 上存在点P,
使得△BPA是以∠B为顶角的等腰三角形,请用
不等式表示 的取值范围:___▲___.
三、解答题 (本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)
17.(1)计算: ;(2)因式分解: .
18.解不等式:
19.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值 元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),兆枯人均生产产值为y(元).
(1)求y关于x的函数关系式;
(2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关?
20.下图1为义乌市2005年,2006年城镇居民人均可支配收入构成条形统计图。图2为义乌市2006年城镇居民人均可支配收入构成扇形统计图,城镇居民个人均可支配收入由工薪收入、经营净收入、财产性收入、转移性收入四部分组成。请根据图中提供的信息回答下列问题:
(1)2005年义乌市城镇居民人均工薪收入为________元,2006年义乌市城镇居民人均可支配收入为_______元;
(2)在上图2的扇形统计图中,扇形区域A表示2006年的哪一部分收入:__________.
(3)求义乌市2005年到2006年城镇居民人远亲中支配收入的增长率(精确到0.1℅)
21.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据
下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长。
(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;
(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;
(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.
22.如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示)
(图1) (图2) (图3)
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决。
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH
(图4) (图5) (图6)
23.如图,某剧组在东海拍摄广泛风光片,拍摄基地位于A处,在其正南方向15海里处一小岛B,在B的正东方向20海里处有一小岛C,小岛D位于AC上,且距小岛A10海里.
(1)求∠A的度数(精确到1°)和点D到BC的距离;
(2)摄制组甲从A处乘甲船出发,沿A→B→C的方向匀速
航行,摄制组乙从D处乘乙船出发,沿南偏西方向匀速
直线航行,已知甲船的速度是乙船速度的2倍,若两船
同时出发并且在B、C间的F处相遇,问相遇时乙船航
行了多少海里?(结果精确到0.1海里)
24.如图,抛物线 与x轴交A、B两点(A
点在B点左侧),直线 与抛物线交于A、C两点,其中
C点的横坐标为2.
(1)求A、B 两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平
行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,
使A、C、F、G这样的四个点为顶点的四边形是
平行四边形?如果存在,求出所有满足条件的F
点坐标;如果不存在,请说明理由.
浙江省2007年初中毕业生学业考试(义乌市卷)
数学参考答案和评分标准
一. 选择题(本题共10小题,每小题4分,共40分)
题号 1 2 3 4 5 6 7 8 9 10
答案 A C A B D D A C B C
评分标准 选对一题给4分,不选,多选,错选均不给分
二、填空题(本题有6小题,每小题5分,共30分)
11. 3 ; 12.12; 13.-3;
14.只要满足 的正数R、r即可;
15. 16.(1) 或 (2)45°< <90°或90°< <135°
三、解答题 (本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)
17.解:(1) =2-3+1(3分)
=0 (1分)
(2) = (2分)
= (2分)
18.解:不等式(1)的解集为x>-2 (3分)
不等式(2)的解集为x≤1(3分)
∴不等式组的解为-2<x≤1(2分)
19.解:(1) (x为正整数).(x范围不写不扣分) (4分)
(2)2006年全市人均生产产值= (元)(2分)
∵ (1分)
∴我市2006年人均生产产值已成功跨越6000美元大关(1分)
20.解: (1)9601;21576。(填对一个得2分,填对2个得3分)
(2)财产性收入(2分)
(3)∵2005年居民人均可支配:9601+2544+5797+1068=19010(1分)
∴所求的增值率: (2分)
21.解:(1) (3分)
(2)画图1分
分两种情况:① (1分)
② (1分)
∵ ∴最短路程为 cm(1分)
(3)由已知得所求的最短的路程为 = 。(过程略)(3分)
22.解:(1)图形平移的距离就是线段BC的长(2分)
又∵在Rt△ABC中,斜边长为10cm,∠BAC=30,∴BC=5cm,
∴平移的距离为5cm.(2分)
(2)∵∠ ,∴∠ ,∠D=30°.
∴∠ .(1分)
在RtEFD中,ED=10 cm,∵FD= ,(1分)
∵ cm.(2分)
(3)△AHE与△ 中,∵ ,(1分)
∵ , ,
∴ ,即 .(1分)
又∵ ,∴△ ≌△ (AAS)(1分).
∴ .(1分)
23.解:(1)在Rt△ABC中, ∵tanA= ,(1分)
∴ (2分)
过点D作DE⊥BC于点E,
∵ (1分)
而Rt△ABC∽Rt△DEC
∴ (1分)
∴ (1分)
∴D到BC的距离为9海里.
(2)设相遇时乙船航行了x海里,则DF=x,AB+BF=2x.(2分)
∵CD=15,DE=9,∴CE=12.∴EF=15+20-2x-12=23-2x(1分)
在Rt△DEF中, (1分)
解得: (不合题意,舍去), .(2分)
答:相遇时乙船航行了9.7海里.
24.解:(1)令y=0,解得 或 (1分)
∴A(-1,0)B(3,0);(1分)
将C点的横坐标x=2代入 得y=-3,∴C(2,-3)(1分)
∴直线AC的函数解析式是y=-x-1
(2)设P点的横坐标为x(-1≤x≤2)(注:x的范围不写不扣分)
则P、E的坐标分别为:P(x,-x-1),(1分)
E( (1分)
∵P点在E点的上方,PE= (2分)
∴当 时,PE的最大值= (1分)
(3)存在4个这样的点F,分别是
(结论“存在”给1分,4个做对1个给1分,过程酌情给分)
义乌市东塘学校 刘小平录入
一、选择题(每小题3分,共30分)
1.(2016•沈阳)一元二次方程x2-4x=12的根是()
A.x1=2,x2=-6B.x1=-2,x2=6C.x1=-2,x2=-6D.x1=2,x2=6
2.(2016•宁德)已知袋中冲贺有若干个球,其态判誉中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是()
A.2B.4C.6D.8
3.(2016•玉林)如图,CD是⊙O的直径,已知∠1=30°,则∠2=()
A.30°B.45°C.60°D.70°
4.(2016•泸州)若关于x的一元二次方程x2+2(k-1)x+k2-1=0有实数根,则k的取值范围是()
A.k≥1B.k>1C.k<1D.k≤1
5.(2016•孝感)将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()
A.(3,-1)B.(1,-3)C.(2,-2)D.(-2,2)
第3题图
第5题图
第6题图
6.(2016•x疆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()
A.a>0B.c<0
C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小
7.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()
A.①②B.②③C.①③D.①②③
8.已知点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()
A.(-3,7)B.(-1,7)C.(-4,10)D.(0,10)
第7题图
第9题图
第10题图
9.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD,DC相切,与AB,CB的延长线分别相交于点E,F,则图中阴影部分的面积为()
A.3+π2B.3+πC.3-π2D.23+π2
10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA•OB=-ca.其中正确结论的个数是()
A.4B.3C.2D.1
二、填空题(每小题3分,共24分)
11.(2016•达州)设m,n分别为一元二次方程x2+2x-2018=0的两个实数根,则m2+3m+n=______.
12.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=________.
第12题图
第14题图
13.(2016•长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.
14.(2016•南通)如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,帆段则BF=__________cm.
15.(2016•眉山)一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.
16.(2016•荆州)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为________.
17.(2016•梧州)如图,点B、C把AD︵分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是________.
第17题图
第18题图
18.(2016•茂名)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=33x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=33x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(3,1),则点A8的横坐标是________.
三、解答题(共66分)
19.(6分)解方程:
(1)(2016•淄博)x2+4x-1=0;(2)(x-2)2-3x(x-2)=0.
20.(7分)(2016•青岛)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.
21.(7分)(2016•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=23,求CD的长.
22.(7分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.
(1)求证:BC=BC′;
(2)若AB=2,BC=1,求AE的长.
23.(8分)(2016•贵港)为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.
(1)求2014至2016年该市投入科研经费的年平均增长率;
(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.
24.(9分)如图,点A在x轴的正半轴上,以OA为直径作⊙P,C是⊙P上一点,过点C的直线y=33x+23与x轴,y轴分别相交于点D,点E,连接AC并延长与y轴相交于点B,点B的坐标为(0,43).
(1)求证:OE=CE;
(2)请判断直线CD与⊙P位置关系,证明你的结论,并求出⊙P半径的值.
25.(10分)(2016•葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数解析式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润?利润是多少?
26.(12分)(2016•衡阳)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,94),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.
期末检测题
1.B2.D3.C4.D5.C6.C7.A8.D9.A
10.B11.201612.50°13.5614.2+2
15.83cm16.-1或2或117.π818.63+6
19.(1)x1=-2+5,x2=-2-5.(2)x1=2,x2=-1.20.这个游戏对双方是公平的.列表得:
∴一共有6种情况,积大于2的有3种,∴P(积大于2)=36=12,∴这个游戏对双方是公平的.21.
(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC.(2)如图所示,连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4-a,在Rt△ABD中,由勾股定理可得BD2=AB2-AD2=42-(4-a)2.在Rt△CBD中,由勾股定理可得BD2=BC2-CD2=(23)2-a2.∴42-(4-a)2=(23)2-a2,整理得a=32,即CD=32.
22.
(1)证明:如图所示,连接AC,AC′,∵四边形ABCD为矩形,∴∠ABC=90°,即AB⊥CC′,∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′.(2)∵四边形ABCD为矩形,∴AD=BC,∠D=∠ABC′=90°,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,∴AD=AD′,∵BC=BC′,∴BC′=AD′,在△AD′E与△C′BE中,∠D′=∠ABC′,∠AED′=∠BEC′,AD′=BC′,∴△AD′E≌△C′BE,∴BE=D′E,设AE=x,则D′E=2-x,在Rt△AD′E中,∠D′=90°,由勾股定理,得x2-(2-x)2=1,解得x=54,∴AE=54.23.(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得500(1+x)2=720,解得x1=0.2=20%,x2=-2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得a-720720×100%≤15%,解得a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加,故a的取值范围为720<a≤828.
24.
(1)证明:如图所示,连接OC,∵直线y=33x+23与y轴相交于点E,∴点E的坐标为(0,23),即OE=23.又∵点B的坐标为(0,43),∴OB=43,∴BE=OE=23,又∵OA是⊙P的直径,∴∠ACO=90°,即OC⊥AB,∴OE=CE.(2)直线CD是⊙P的切线.证明:连接PC,PE,由(1)可知OE=CE.在△POE和△PCE中,PO=PC,PE=PE,OE=CE,∴△POE≌△PCE,∴∠POE=∠PCE.又∵x轴⊥y轴,∴∠POE=∠PCE=90°,∴PC⊥CE,即PC⊥CD.又∵直线CD经过半径PC的外端点C,∴直线CD是⊙P的切线.∵对y=33x+23,当y=0时,x=-6,即OD=6,在Rt△DOE中,DE=OD2+OE2=62+(23)2=43,∴CD=DE+EC=DE+OE=43+23=63.设⊙P的半径为r,则在Rt△PCD中,由勾股定理知PC2+CD2=PD2,即r2+(63)2=(6+r)2,解得r=6,即⊙P半径的值为6.25.y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,则(x-20)(-2x+80)=150,整理,得x2-60x+875=0,(x-25)(x-35)=0,解得x1=25,x2=35(不合题意舍去),答:每本纪念册的销售单价是25元.(3)由题意可得w=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,此时当x=30时,w,又∵售价不低于20元且不高于28元,x<30时,y随x的增大而增大,∴当x=28时,w=-2(28-30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润,利润是192元.26.(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,94),故抛物线的解析式可设为y=ax2+94.
∵A(-1,2)在抛物线y=ax2+94上,∴a+94=2,解得a=-14,∴抛物线的函数解析式为y=-14x2+94.
(2)①当点F在第一象,如图1,令y=0得,-14x2+94=0,解得x1=3,x2=-3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有-m+n=2,3m+n=0,解得m=-12,n=32,∴直线AC的解析式为y=-12x+32.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=-12x+32上,∴-12p+32=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象,同理可得,点F的坐标为(-3,3),此时点F不在线段AC上,故舍去.综上所述,点F的坐标为(1,1).
(3)过点M作MH⊥DN于点H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=-12t+32,则N(t,-12t+32),DN=-12t+32.当x=t+1时,y=-12(t+1)+32=-12t+1,则M(t+1,-12t+1),ME=-12t+1.在Rt△DEM中,DM2=12+(-12t+1)2=14t2-t+2.在Rt△NHM中,MH=1,NH=(-12t+32)-(-12t+1)=12,∴MN2=12+(12)2=54.①当DN=DM时,(-12t+32)2=14t2-t+2,解得t=12;②当ND=NM时,-12t+32=54=52,解得t=3-5;③当MN=MD时,54=14t2-t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述,存在这样的t,使△DMN是等腰三角形,t的值为12,3-5或1.
在每一次数学期末考试结束后,要学会反思,这样对于九年级的数学知识才会和州掌握熟练。以下是我为你整理的九年级圆棚培数学上册期末试题,希望对大家有帮助!
九年级数学上册期末试题
一、选择题(本题共32分,每小题4分)
下面各题均有四个选项,其中只有一个是符合题意的.
1. 经过点P( , )的双曲线的解析式是( )
A. B.
C. D.
2. 如图所示,在△ABC中,DE//BC分别交AB、AC于点D、E,
AE=1,EC=2,那么AD与AB的比为
A. 1:2 B. 1:3
C. 1:4 D. 1:9
3. 一个袋子中装有6个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为
A. B. C. D.
4. 抛物线 的顶点坐标是
A. (-5,-2) B.
C. D. (-5,2)
5. △ABC在正方形网格纸中的位置如图所橘唯示,则 的值是
A. B.
C. D.
6. 要得到函数 的图象,应将函数 的图象
A.沿x 轴向左平移1个单位 B. 沿x 轴向右平移1个单位
C. 沿y 轴向上平移1个单位 D. 沿y 轴向下平移1个单位
7. 在平面直角坐标系中,如果⊙O是以原点为圆心,以10为半径的圆,那么点A(-6,8)
A. 在⊙O内 B. 在⊙O外
C. 在⊙O上 D. 不能确定
8.已知函数 (其中 )的图象如图所示,则函数 的图象可能正确的是
二、填空题(本题共16分,每小题4分)
9. 若 ,则锐角 = .
10. 如图所示,A、B、C为⊙O上的三个点, 若 ,
则∠AOB的度数为 .
11.如图所示,以点 为圆心的两个同心圆中,大圆的弦 是小圆的切线,
点 为切点,且 , ,连结 交小圆于点 ,
则扇形 的面积为 .
12. 如图所示,长为4 ,宽为3 的长方形木板在桌面上做
无滑动的翻滚(顺时针方向),木板上点A位置变化为 ,
由 此时长方形木板的边
与桌面成30°角,则点A翻滚到A2位置时所经过的路径总长度为 cm.
三、解答题(本题共30分,每小题5分)
13. 计算:
14. 已知:如图,在Rt△ABC中,
的正弦、余弦值.
15.已知二次函数 .
(1)在给定的直角坐标系中,画出这个函数图象的示意图;
(2)根据图象,写出当 时 的取值范围.
16. 已知:如图,AB是⊙O的弦,半径OC、OD分别交AB
于点E、F,且AE=BF.
求证:OE=OF
17.已知:如图,将正方形ABCD纸片折叠,使顶点A落在边CD上的
点P处(点P与C、D不重合),点B落在点Q处,折痕为EF,PQ与
BC交于点G.
求证:△PCG∽△EDP.
18.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余都相同),其中黄球有1个,白球有2个.第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画树状图的方法求两次都摸到黄球的概率.
四、解答题(本题共20分,每小题5分)
19.已知:如图,在平面直角坐标系xoy中,直线 与
x轴交于点A,与双曲线 在第一象限内交于点B,
BC垂直x轴于点C,OC=2AO.求双曲线 的解析式.
20.已知:如图,一架直升飞机在距地面450米上空的P点,
测得A地的俯角为 ,B地的俯角为 (点P和AB所在
的直线在同一垂直平面上),求A、B两地间的距离.
21.作图题(要求用直尺和圆规作图,不写出作法,
只保留作图痕迹,不要求写出证明过程).
已知:圆.
求作:一条线段,使它把已知圆分成面积相等的两部分.
22.已知:如图,△ABC内接于⊙O,且AB=AC=13,BC=24,
PA∥BC,割线PBD过圆心,交⊙O于另一个点D,联结CD.
⑴求证:PA是⊙O的切线;
⑵求⊙O的半径及CD的长.
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23. 已知:在 中, ,点 为 边的中点,点 在 上,连结 并延长到点 ,使 ,点 在线段 上,且 .
(1)如图1,当 时,
求证: ;
(2)如图2,当 时,
则线段 之间的数量关系为;
(3)在(2)的条件下,延长 到 ,使 ,
连接 ,若 ,求 的值.
24.已知 均为整数,直线 与三条抛物线 和 交点的个数分别是2,1,0,若
25.已知二次函数 .
(1)求它的对称轴与 轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,如图所示,设平移后的抛物线的顶点为 ,与 轴、 轴的交点分别为A、B、C三点,连结AC、BC,若∠ACB=90°.
①求此时抛物线的解析式;
②以AB为直径作圆,试判断直线CM与此圆的位置关系,并说明理由.
九年级数学上册期末试题答案
阅卷须知:
1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
3.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
一、选择题(本题共32分,每小题4分)
题 号 1 2 3 4 5 6 7 8
答 案 B B D C A D C D
二、填空题(本题共16分,每小题4分)
题 号 9 10 11 12
答 案 60° 80°
三、解答题(本题共30分,每小题5分)
13. 解:原式 ………………………………………………………3分
…………………………………………………………5分
15.(1)示意图正确 ……………………………………………………………………3分
(2)当y < 0时,x的取值范围是x<-3或x>1; ……………………………5分
16. 证明:过点O作OM⊥AB于M ……………………………………1分
∴AM=BM ……………………………………3分
∵AE=BF,
∴EM=FM …………………………4分
∴OE= ……………………………………5分
18.解:
依题意,列表为:
黄 白 白
黄 (黄,黄) (黄,白) (黄,白)
白 (白,黄) (白,白) (白,白)
白 (白,黄) (白,白) (白,白)
由上表可知,共有9种结果,其中两次都摸到黄球的结果只有1种,
所以两次都摸到黄球的概率为 . …………………5分
四、解答题(本题共20分,每小题5分)
19.解:在 中,令y=0,得
.
解得 .
∴直线 与x轴的交点A的坐标为:(-1,0)
∴AO=1.
∵OC=2AO,
∴OC=2. …………………2分
∵BC⊥x轴于点C,
∴点B的横坐标为2.
∵点B在直线 上,
∴ .
∴点B的坐标为 . …………………4分
∵双曲线 过点B ,
∴ .
解得 .
∴双曲线的解析式为 . …………………5分
21.
AB为所求直线. ……………………5分
22.
证明:(1)联结OA、OC,设OA交BC于G.
∵AB=AC,
∴
∴ AOB= AOC.
∵OB=OC,
∴OA⊥BC.
∴ OGB=90°
∵PA∥BC,
∴ OAP= OGB=90°
∴OA⊥PA.
∴PA是⊙O的切线. …………………2分
(2)∵AB=AC,OA⊥BC,BC=24
∴BG= BC=12.
∵AB=13,
∴AG= . …………………3分
设⊙O的半径为R,则OG=R-5.
在Rt△OBG中,∵ ,
.
解得,R=16.9 …………………4分
∴OG=11.9.
∵BD是⊙O的直径,
∴O是BD中点,
∴OG是△BCD的中位线.
∴DC=2OG=23.8. …………………5分
23.(1)证明:如图1连结
(2) …………………………………4分
(3)解:如图2
连结 ,
∴
又 ,
.
∵
为等边三角形………………………………..5分
在 中,
, ,
tan∠EAB的值为
25.解:(1)由
得
∴D(3,0) …………………………1分
(2)∵
∴顶点坐标
设抛物线向上平移h个单位,则得到 ,顶点坐标
∴平移后的抛物线:
……………………2分
当 时,
,
得
∴ A B ……………………3分
易证△AOC∽△COB
∴ OA•OB ……………………4分
∴ ,
∴平移后的抛物线: ………5分
(3)如图2, 由抛物线的解析式 可得
A(-2 ,0),B(8 ,0) C(0,4) , ……………………6分
过C、M作直线,连结CD,过M作MH垂直y轴于H,
则
∴
在Rt△COD中,CD= =AD
∴点C在⊙D上 ……………………7分
∴
∴
∴△CDM是直角三角形,
∴CD⊥CM
∴直线CM与⊙D相切 …………………………………8分
说明:以上各题的其它解法只要正确,请参照本评分标准给分。
初一数学计算题大全及答案【同步达纲练习】
1.选择题:
(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )
A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3
(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )
A.-10 B.-9 C.8 D.-23
(3)-7,-12,+2的代数和败喊卜比它们的绝对值的和小( )
A.-38 B.-4 C.4 D.38
(4)若 +(b+3)2=0,则b-a- 的值是( )
A.-4 B.-2 C.-1 D.1
(5)下列说法正确的察穗是( )
A.两个负数相减,等于绝对值相减 B.两个负渗中数的差一定大于零 C.正数减去负数,实际是两个正数的代数和 D.负数减去正数,等于负数加上正数的绝对值
(6)算式-3-5不能读作( )
A.-3与5的差 B.-3与-5的和 C.-3与-5的差 D.-3减去5
2.填空题:(4′×4=16′)
(1)-4+7-9=- - + ;
(2)6-11+4+2=- + - + ;
(3)(-5)+(+8)-(+2)-(-3)= + - + ;
(4)5-(-3 )-(+7)-2 =5+ - - + - .
3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)
(1)(-21)+(+16)-(-13)-(+7)+(-6);
(2)-2 -(- )+(-0.5)+(+2)-(+ )-2.
4.计算题(6′×4=24′)
(1)-1+2-3+4-5+6-7;
(2)-50-28+(-24)-(-22);
(3)-19.8-(-20.3)-(+20.2)-10.8;
(4)0.25- +(-1 )-(+3 ).
5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′)
(1)x+y-z;
(2)-x-y+z;
(3)-x+y+z;
(4)x-y-z.
初一数学计算题大全及答案【素质优化训练】
(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;
(2)-(+2 )-(-1 )-(+3 )+(- ) =( 2 )+( 1 )+( 3 )+( );
(3)-14 5 (-3)=-12;
(4)-12 (-7) (-5) (-6)=-16;
(5)b-a-(+c)+(-d)= a b c d;
2.当x= ,y=- ,z=- 时,分别求出下列代数式的值;
(1)x-(-y)+(-z);
(2)x+(-y)-(+z);
(3)-(-x)-y+z;
(4)-x-(-y)+z.
3.就下列给的三组数,验证等式: a-(b-c+d)=a-b+c-d是否成立.
(1)a=-2,b=-1,c=3,d=5; (2)a=23 ,b=-8,c=-1 ,d=1 .
4.计算题
(1)-1-23.33-(+76.76);
(2)1-2*2*2*2;
(3)(-6-24.3)-(-12+9.1)+(0-2.1);
(4)-1+8-7
参考答案:
【同步达纲练习】
1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2; 3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5 5.(1)-4; (2)4; (3)0.4; (4)-0.4.
【素质优化训练】 1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-. 2.(1) (2) (3) (4)- 3.(1) (2)都成立. 4.(1)- (2) (3)-29.5 (4)-1 第(4)题注意同号的数、互为相反数先分别结合。