数学圆锥曲线解题技巧?(2)求曲线方程和求轨迹;(3)关于直线与圆及圆锥曲线的位置关系的问题。考查方式为:选择题主要以椭圆、双曲线为考查对象,填空题以椭圆、双曲线、抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,那么,数学圆锥曲线解题技巧?一起来了解一下吧。
高中数学合集
1znmI8mJTas01m1m03zCRfQ
1234
简介:高中数学优质资料,包括:试题试卷、课件、教材、、各大名师网校合集。
题型一:求曲线方程
<1>曲线形状已知,待定系数法解决
<2>曲线形状未知,求轨迹方程
题型二:直线和圆锥曲线关系
把直线方程代入到曲线方程中,解方程,进而转化为一元二次方程后利用判别式、韦达定理,求根公式等来处理(应该特别注意数形结合的思想)
题型三: 两点关于直线对称问题
求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
题型四: 两直线垂直
斜率相乘等于-1
题型五: 中点弦问题
点差法:设典线上两点为(X1.1),(X2,Y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(注意斜率不存在D的情况讨论),从而消去四个参数。
题型六: 焦点三角形
椭圆或双曲线上一点和其两个焦点构成三角形,多用正余弦定理解决问题
题型七: 最值问题(求范围)
<1>若命题条件和结论有几何意义,可用图形性质来解答
<2>若命题条件和结论有函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值.
解答数学圆锥曲线试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。下面我给你分享高中数学圆锥曲线解题技巧,欢迎阅读。
高中数学圆锥曲线解题技巧
1.充分利用几何图形的策略
解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。
例:设直线3x+4y+m=0与圆x+y+x-2y=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,求m的值。
2.充分利用韦达定理的策略
我们经常设出弦的端点坐标但不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
例:已知中心在原点O,焦点在y轴上的椭圆与直线y=x+1相交于P、Q两点,且OP⊥OQ,|PQ|=,求此椭圆方程。
3.充分利用曲线方程的策略
例:求经过两已知圆C:x+y-4x+2y=0和C:x+y-2y-4=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程。
4.充分利用椭圆的参数方程的策略
椭圆的参数方程涉及正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题。
数学圆锥曲线解题技巧
(1)充分利用几何图形
解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
(2)充分利用韦达定理及“设而不求”的策略
我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
(3)充分利用曲线系方程
利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。
(4)充分利用椭圆的参数方程
椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。
(5)线段长的几种简便计算方法
①充分利用现成结果,减少运算过程。
②结合图形的特殊位置关系,减少运算
在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
③利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。
轨迹问题、中点弦问题、垂直类问题等等,不要怕算。【知识结构】
【命题趋势分析】
从近三年高考情况看,圆锥曲线的定义、方程和性质仍是高考考查的重点内容,三年平均占分20分,约为全卷分值的13.3%,在题型上一般安排选择、填空、解答各一道,分别考查三种不同的曲线,而直线与圆锥曲线的位置关系又是考查的重要方面。
例1 (2002年江苏卷理科第13题)椭圆 的一个焦点是(0,2),则k________________________________________。
分析 本题主要考查椭圆的标准方程,先将其化为标准形式,然后求解。
解 椭圆方程即 ∴ ,∴由 解得k=1。
点评 由焦点在y轴上,其标准方程应化为 的形式,若此题变化为:已知曲线 的焦距为4,则k_____________________________________。
则应分两种情况讨论:(1)若为椭圆,则k=1;(2)若为双曲线,方程即为
∴ ,由 ,由 ,得 。
例2 (2001年全国卷理科第14题)双曲线 的两个焦点为 ,点P在双曲线上,若 ,则点P到x轴的距离为_________________________________。
以上就是数学圆锥曲线解题技巧的全部内容,题型一:求曲线方程 <1>曲线形状已知,待定系数法解决 <2>曲线形状未知,求轨迹方程 题型二:直线和圆锥曲线关系 把直线方程代入到曲线方程中,解方程,进而转化为一元二次方程后利用判别式、韦达定理。