高中数学函数图像大全?指数函数,对数函数,幂函数(1次,2次,-1次),三角函数图像(sina,cosa,tana),抛物线,椭圆,双曲线。幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,那么,高中数学函数图像大全?一起来了解一下吧。
幂函数:形如y=x^a(a为常数)的函数,即以底数x为自变量,幂a为因变量,其中a为常量的函数称为幂函数。幂函数的图像随a的取值不同呈现出不同的样子,需具体问题具体分析。下面是几种常见的幂函数图像。
指数函数:一般形式为y=a^x(a>0且≠1)(x∈R).它是初等函数中的一种。其中a为常数,x为变量。
一次函数:也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。如y=ax+b,其中a,b为常数,x为变量。
二次函数:是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
对数函数:一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数。即指数函数和对数函数关于直线y=x对称。
后面四种函数图像教材中都有,你可以查阅,或者在网上搜索也可以看到。
抛物线的四种图像如下图所示:
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。
抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
扩展资料:
抛物线四种方程的异同:
共同点:
①原点在抛物线上,离心率e均为1。
②对称轴为坐标轴。
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
指数函数,对数函数,幂函数(1次,2次,-1次),三角函数图像(sina,cosa,tana),抛物线,椭圆,双曲线。
幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
扩展资料:
Functions images(函数的图象)
一次函数图像
点集{(x,y)丨y=x}叫做函数y=x的图象
一次函数
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
参考资料来源:百度百科-函数图像
、函数的定义
(1)传统定义:如果在某个变化过程中有两个变量x和y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么把y叫做x的函数,x叫做自变量,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。y是x 的函数,可以记作y =f(x)(f表示对应法则)。
(2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f : A→B就叫做A到B的函数,记作y =f(x),其中x �8�3 A ,y�8�3B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C�8�2 B。
注意
①由函数的近代定义可知,函数是数集间的映射。
②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。
③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。
绝对值在不少初中甚至高中数学大题中都是压轴题目,以下是整理出的关于绝对值图像的知识点,希望对各位同学有所帮助。
首先就是最简单的绝对值函数图像,如下图。
绝对值的概念:|a|=当a>0时,a;当a=0时,0;当a<0时,-a。
坐标轴内关于x轴成轴对称的两点A,B,若A(x0,y0)则B(x0,-y0)。
函数平移规律:左加右减,上加下减。
函数f(x+m)可看作函数f(x)沿x轴(即横向)平移m个单位.若m>0,向左平移,若m<0,向右平移。
函数f(x)+m可看作函数f(x)沿y轴(即纵向)平移m个单位,若m>0,则向上平移.若m<0,则向下平移。
图片来源于网络
以上就是关于绝对值函数的知识点了,当然还是有一些边缘知识没有提到,但这些已经足够应对初中难题了,加油!
以上就是高中数学函数图像大全的全部内容,(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数。