古代中国数学?其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。那么,古代中国数学?一起来了解一下吧。
这里有数学详细发展史:
http://www.fxzx.fp.net.cn/teacher/jhw/shihaigouchen/shuxueshi/shgc-sxls.htm
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。
十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。
1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。
1 引言
中国是四大文明古国之一,也是数学的发源地之一,由于地域、文化等特点,中国古代数学与欧洲数学存在着巨大的差别.这不仅表现在对理论与计算的偏重上,还表现在数学与社会关系的处理上.欧洲数学注重理论的逻辑推演和系统的建立.而与之相对,中国数学注重算法的研究和知识的现实可用性.这些特点使得中国数学在很长一段时间里成就位居世界之首.尤其是在古希腊数学衰落之后,中国数学取得了许多举世瞩目的成就.当西欧进入黑暗时代时,中国数学却在腾飞,许多成就比后来欧洲在文艺复兴和文艺复兴之后取得的同样成就早得多.这些成就的取得固然令我们感到骄傲,但到了十四世纪以后中国数学却开始走向了衰落.几百年来,中国人在数学这片领域上几乎找不到任何重大的发现与创新.这其中的原因不能不令我们深思.对历史进行研究能让我们看到中国古代数学由兴到衰的过程.对产生这种结果的诸多因数进行分析就能让我们深刻认识到衰落的真正原因,从而弃其糟粕,取其精华.
中国古代数学究竟取得了那些重要成就?中国古代数学又是怎样走向衰落的?为弄清这些问题,首先让我们来回顾一下中国的数学发展史.
2 中国古代数学发展简史
数学在中国的历史悠久绵长.在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;《易经》中还包含有组合数学与二进制思想.2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似.
算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算.中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的.
但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间.《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的.《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日.”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”.
《九章算术》在中国古代数学发展过程中占有非常重要的地位.它经过许多人整理而成,大约成书于东汉时期.全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等.在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同.注重实际应用是《九章算术》的一个显著特点.该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.
《九章算术》标志以筹算为基础的中国古代数学体系的正式形成.
中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物.
赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释.在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法.用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献.三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造.其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”.他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础.在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”.另外,《海岛算经》也是刘徽编撰的一部数学论著.
南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世.
祖冲之、祖暅父子的工作在这一时期最具代表性.他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步.根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图和荷兰人安托尼兹才得出同样结果.②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利才提出同一定理,此外,祖氏父子在天文学上也有一定贡献.
隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关.在当时的算学馆《算经十书》成为专用教材对学生讲授.《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的.
公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式.
从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作.中国古代数学以宋、元数学为最高境界.在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的.
贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚.
秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究.
李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论.
公元1261年,南宋杨辉在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式.
公元1303年,元代朱世杰著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利和公元1676一1678年间牛顿才提出内插法的一般公式.
14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势
,到了近代已远远落后于西方国家的数学水平.
在中国古代数学几千年的发展历程中,我们不难看出中国古代数学思想与西方数学思想的诸多不同点,也就是其独具特色的一面.接下来让我们来分析一下中国古代数学的思想特点.
数学的历史
数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽
原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。
西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。
公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
中国古代数学的成就包括圆周率、割圆术、十进位制计数法、算经十书、勾股定理、(测高、远、深的方法)测量太阳高度、祖冲之~祖暅父子、等间距二次内插公式、秦九韶的高次方程数值解法、杨辉三角和剁积术以及珠算。
圆周率
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢。中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,认为圆周率是常数。
我国数学家刘徽在注释《九章算术》(263)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.16)。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。
1.数学著作《周髀算经》
《周髀算经》应该算是我国更早的一部数学著作,距今已经有两千年左右的历史了。在当时社会的发展经济低下的条件下,人们都是采用用抄写的方式进行学习并且把数学知识传授给下一代的。由此可见《周髀算经》中勾股定理的的问世对人们在进行计算等方式方法上有很大的帮助。那么我国古代有哪些知名的数学著作流传至今呢《周髀算经》可以算的上其中的一部。
2.《九章算数》
《九章算数》也是我国古代有哪些知名的数学著作流传至今中的很重要的一部。其对于我过古代数学以后的发展有着很深远的影响,自从《九章算术》问世以后,一千几百年间以来一直被直接用在数学教育的教科书本里。在一些与中国临近的国家中也都曾经拿它当教科书来教授学生学习数学所以《九章算术》在我国古代数学著作中有着很重要的地位。
3.《宋元算书》
经过从汉到唐一千多年的发展已经形成了独有的特点,在这个基础上到了宋元时期问世的《宋元算书》给了更好的诠释。《宋元算书》其实是一直流传的四大家的数学著作,因其同一个时期出现取得的成就又很高可以在中国古代算是很辉煌的时刻。那么我国古代有哪些知名的数学著作流传至今呢?《宋元算书》也是其中的一个部分。
数学家:
1.贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。
以上就是古代中国数学的全部内容,1、《张丘建算经》:中国古代数学著作。(约公元5世纪)现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。2、《四元玉鉴》:《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。