数学几何公式?立体几何所有公式如下:1、平面图形(名称符号周长C和面积S)正方形边长a,C=4a,S=a2 长方形边长a和b,C=2(a+b),S=ab 三角形边长a,b,c,a边上的高h,周长的一半s,内角A,B,C,那么,数学几何公式?一起来了解一下吧。
圆的标准方程 (注:(a,b)是圆心坐标)
圆的一般方程 注:
抛物线标准方程
直棱柱侧面积 斜棱柱侧面积
正棱锥侧面积 正棱台侧面积
圆台侧面积 球的表面积
圆柱侧面积 圆锥侧面积
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 正棱台侧面积
球的表面积
圆台侧面积 S=1/2(c+c')l=pi(R+r)
圆柱侧面积 S=c*h=2π*h圆锥侧面积 S=1/2*c*l=π*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h圆柱体V=π*r^2h v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径 l=a*r a是圆心角的弧度数r >0 扇形面积公式
锥体体积公式 圆锥体体积公式
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 长方形的周长=(长+宽)×2 c =2〔a+b〕
正方形的周长=边长×4 c=4a
长方形的面积=长×宽 s=ab
正方形的面积=边长×边长 s=a²
三角形的面积=底×高÷2
已知三角形底a,高h,则S=ah/2 平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=d=2r
圆的周长=πd= 2πr
圆的面积= πr²
长方体的表面积=(长×宽+宽×高+高×长)×2 s=2〔ab+bc+ca〕
长方体的体积 =长×宽×高 v=abc
正方体的表面积=棱长×棱长×6 s=6a²
正方体的体积=棱长×棱长×棱长 v=a³
圆柱的侧面积=底面圆的周长×高 s=ch
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高 v=sh
圆锥的体积=底面积×高÷3 v=sh÷3
柱体体积=底面积×高 名称 符号 周长C和面积S
正方形 a—边长 C=4a S=a²
长方形 a和b-边长 C=2(a+b) S=ab
三角形 a,b,c-三边长 其中s=(a+b+c)/2 S=ah/2
h-a边上的高 =ab/2×sinC
s-周长的一半 =[s(s-a)(s-b)(s-c)]1/2
A,B,C-内角 =a^2sinBsinC/(2sinA)
是要特殊的三角函数公式还是普通的?
普通的:正弦=对边比斜边
余弦=邻边比斜边
正切=对边比邻边
特殊的:sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3
初中应该就这些吧,我们初中就学了这些。
梅尼劳斯(Menelaus)定理是由古希腊数学家梅尼劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
证明:
过点A作AG∥BC交DF的延长线于G,
则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
--------------------------------------------------------------------------------------
类似的还有重要的3个分别为:赛瓦定理:
设A',B',C'分别是△ABC的三边BC,CA,AB或其延长线上的点,若AA',BB',CC'三线平行或共点,则(BA'/A'C)(CB'/B'A)(AC'/C'B)=1.
塞瓦定理的逆定理: 设A',B',C'分别是△ABC的三边BC,CA,AB或其延长线上的点,若(BA'/A'C)(CB'/B'A)(AC'/C'B)=1 则AA',BB',CC'三直线共点或三直线互相平行。
立体几何所有公式如下:
1、平面图形(名称符号周长C和面积S)
正方形边长a,C=4a,S=a2
长方形边长a和b,C=2(a+b),S=ab
三角形边长a,b,c,a边上的高h,周长的一半s,内角A,B,C,其中s=(a+b+c)/2,S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四边形边长d,对角线长D,对角线夹角a,S=dD/2·sinα
平行四边形边长a,b,a边的高h,两边夹角α,S=ah=absinα
菱形边长a,夹角α,长对角线长D,短对角线长d,S=Dd/2=a2sinα
梯形上、下底长a和b,高h,中位线长m,S=(a+b)h/2=mh
圆半径r,直径d,C=πd=2πrS=πr2=πd2/4
扇形半径r,圆心角度数a,C=2r+2πr×(a/360),S=πr2×(a/360)
弓形弧长l,弦长b,矢高h,半径r,圆心角的度数α,S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=παr2/360-b/2·[r2-(b/2)2]1/2=r(l-b)/2+bh/2≈2bh/3
圆环外圆半径R,内圆半径r,外圆直径D,内圆直径d,S=π(R2-r2)=π(D2-d2)/4
椭圆长轴D,短轴d,S=πDd/4
2、立方图形(名称符号面积S和体积V)
正方体边长a,S=6a2,V=a3
长方体长a,宽b,高c,S=2(ab+ac+bc,V=abc
棱柱底面积S,高h,V=Sh
棱锥底面积S,高h,V=Sh/3
棱台上、下底面积S1和S2,高h,V=h[S1+S2+(S1S1)1/2]/3
拟柱体上底面积S1,下底面积S2,中截面积S0,高h,V=h(S1+S2+4S0)/6
圆柱底半径r,高h,底面周长C,底面积S底,侧面积S侧,表面积S表,C=2πr,S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
空心圆柱外圆半径R,内圆半径r,高h,V=πh(R2-r2)
直圆锥底半径r,高h,V=πr2h/3
圆台上底半径r,下底半径R,高h,V=πh(R2+Rr+r2)/3
球半径r,直径d,V=4/3πr3=πd2/6
球缺球缺高h,球半径r,球缺底半径a,V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)
球台球台上、下底半径r1和r2,高h,V=πh[3(r12+r22)+h2]/6
圆环体环体半径R,环体直径D,环体截面半径r,环体截面直径d,V=2π2Rr2=π2Dd2/4
桶状体桶腹直径D,桶底直径d,桶高h,V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心),V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
立体几何的意义及八大定理
数学上,立体几何是三维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。
圆柱表面积和体积:S(圆柱的表面积)=S侧+2S底(圆柱的表面积等于圆柱的侧面积加上两个底面积)
V(圆柱的体积)=SH(圆柱的体积等于圆柱的底面积乘上圆柱的高)
圆锥表面积和体积:S(圆锥的表面积)=S侧+S底(圆锥的表面积等于圆锥的侧面积加上一个底面积)
V(圆锥的体积)=﹙1/3﹚SH(圆锥的体积等于圆锥的底面积乘上圆锥的高再乘上1/3)
棱柱的面积和体积:S(:棱柱的表面积)=S侧+2S底(棱柱的表面积等于棱柱的侧面积加上两个底面积)
V(棱柱的体积)=SH(棱柱的体积等于棱柱的底面积乘上棱柱的高)
以上就是数学几何公式的全部内容,空间几何体体积计算公式 1、长方体体积 V=abc=Sh 2、柱体体积 所有柱体 V=Sh、即柱体的体积等于它的底面积S和高h的积、圆柱 V=πr²h、3、棱锥 V=1/3*Sh 4、圆锥 V=1/3*πr²h 5、。