奥赛数学题?等式性质)又∵∠1+∠2+∠E+∠F=360°(四边形内角和定理)∴∠A+∠B+∠C+∠D+∠E+∠F=360°(等量代换)注明:这种解法最为简单,其他解法类同,不再一一赘述,那么,奥赛数学题?一起来了解一下吧。
泽神洲权威分析:∵∠A+∠C=∠1,∠B+∠D=∠2(三角形内角和定理推论)
∴∠A+∠B+∠C+∠D=∠1+∠2(等式性质)
又∵∠1+∠2+∠E+∠F=360°(四边形内角和定理)
∴∠A+∠B+∠C+∠D+∠E+∠F=360°(等量代换)
注明:这种解法最为简单,其他解法类同,不再一一赘述,附本题清晰图片(标记图)
第一个题很麻烦。我做过高考模拟题这样的需要求出ao 1+x的56次方的总和名x=1,太麻烦了。
1:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?
90#2=45盒
90#5=18盒
答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完。因为90能整除五。
2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?
57#3+19盒
答:能正好装完。
3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?
10000#(115+135)=40分
答:40分钟可以打完。
4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?
13X14=192人
答:五年级参加植树的人至少有192人.
下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.
5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?
方程:
解:两车X时后相遇.
31X+44X=300
75X=300
X=4
4小时=240分钟
答:经过240分钟后两车相距300千米.
6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?
解:设X天后挖通隧道
3X+4X=119
7X=119
X=17
答:经过17天挖通隧道.
7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?
解:设舞蹈队有X人
6X+X=140
7X=140
X=20人
答:舞蹈队有20人.
从这里开始不是方程题了.
8:兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?
1300X2=2600米 2600#(180+80)
=2600#260
=10分
答:这时哥哥走了10分钟.
9::六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?
360+480+400=1240个
答:至多可做1240个小礼包.
10:淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.
40#2=20人 40#4=10人 40#5=8人
40#8=5人 40#@0=4人 40#20=2人
答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人.
11:一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?
(15+24)X18#2=351平方米
351X9=3195株
答:这块地可种玉米3159株.
12:某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?
5X4X3=60人 60+1=61人
答:这班有61人.
13:王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?
7X5X3=105粒 105+1=106粒
答:这盒巧克力糖至少有106粒.
14:晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?
15米=150分米 1.2米=12分米 30厘米=3分米
150X12=1800平方分米 3X3=9平方分米
1800#9=200块 200X3=600元
答:需要200块这样的方砖,需要600元.
15:有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?
70X45=3150平方米 3150#90=35米
答:高是35米.
16:一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?
10-5+1=6层 (10+5)X6#2
=15X6#2
=90#2
=45根
答:这批钢管有45根.
1.东高村要修建一个长方体的蓄水池,计划能蓄水720吨。
99
一个数改为140,总和增加(64-55)*7=63
故此数原来等于140-63=77.
其他6个数的总和为55*7-77
它们乘以2之后7个数平均值为:
【2(55*7-77)+77】/7=99.
三角形ABE中,BG为角分线,根据角分线定理,AB/BE=AG/GE=2,由勾股定理,AG+GE=AE=6×根号5,两方程联立,得AG=4×根号5,三角形AOG中,勾股定理得OG=2×根号2.。△AOG的面积=OG×AO/2=12
以上就是奥赛数学题的全部内容,第一题:原式=a(x-x1)(x-x2)。分析:用求根法分解因式,求根法法则:若一个多项式 f(x)=x^n+ax^(n-1)++b在当x=m时值为0,即f(m)=0,则此式必存在因式(x-m)。