当前位置: 首页 > 所有学科 > 数学

高一数学考试题,高一数学试卷电子版免费

  • 数学
  • 2024-07-18

高一数学考试题?分析一:如图,利用点斜式方程,分别与l1、l2联立,求得两交点A、B的坐标(用k表示),再利用|AB|=5可求出k的值,从而求得l的方程. 解析:解法一:若直线l的斜率不存在,则直线l的方程为x=3,此时与l1、那么,高一数学考试题?一起来了解一下吧。

数学高中题目大全带答案

1.192

数列an成等比数列,则数列an*a(n+1)*a(n+2)亦成等比数列本题其比值为24/3,则a7*a8*a9=24/3*24=192

2.210

数列an成等比数列,则数列an+a(n+1)+a(n+2)+a(n+3)+a(n+4)亦成等比数列,则有

a11+a12+a13+a14+a15=(a6+a7+a8+a9+a10)/(a1+a2+a3+a4+a5)*(a6+a7+a8+a9+a10)

=(50-10)/10*(50-10)

=160

则有 S15=50+160=210

高一数学重点知识归纳

这一题四个选项都错了,你可以从a>0和a<0这两个方面考虑,画出图像,就可知四个选项全错了,没答案!

高一下学期数学卷子

一、选择题

1.(2009湖北荆州质检二)过点P(1,2),且方向向量v=(-1,1)的直线的方程为

( )

A.x-y-3=0 B.x+y+3=0

C.x+y-3=0 D.x-y+3=0

答案:C

解析:方向向量为v=(-1,1),则直线的斜率为-1,直线方程为y-2=-(x-1)即x+y-3=0,故选C.

2.(2009重庆市高三联合诊断性考试)将直线l1:y=2x绕原点逆时针旋转60°得直线l2,则直线l2到直线l3:x+2y-3=0的角为 ( )

A.30° B.60° C.120° D.150°

答案:A

解析:记直线l1的斜率为k1,直线l3的斜率为k3,注意到k1k3=-1,l1⊥l3,依题意画出示意图,结合图形分析可知,直线l2到直线l3的角是30°,选A.

3.(2009东城3月)设A、B为x轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程x-y+1=0,则直线PB的方程为 ( )

A.2x+y-7=0 B.2x-y-1=0

C.x-2y+4=0 D.x+y-5=0

答案:D

解析:因kPA=1,则kPB=-1,又A(-1,0),点P的横坐标为2,则B(5,0),直线PB的方程为x+y-5=0,故选D.

4.过两点(-1,1)和(0,3)的直线在x轴上的截距为 ( )

A.-32 B.32 C.3 D.-3

答案:A

解析:由两点式,得y-31-3=x-0-1-0,

即2x-y+3=0,令y=0,得x=-32,

即在x轴上的截距为-32.

5.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值是 ( )

A.3 B.0 C.-1 D.0或-1

答案:D

解析:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,-1a2=-a-23a,∴a=-1或a=3.而当a=3时,两直线重合,∴a=0或-1.

6.两直线2x-my+4=0和2mx+3y-6=0的交点在第二象限,则m的取值范围是

( )

A.-32≤m≤2 B.-32

C.-32≤m<2 D.-32

答案:B

解析:由2x-my+4=0,2mx+3y-6=0,解得两直线的交点坐标为(3m-6m2+3,4m+6m2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m-6m2+3<0且4m+6m2+3>0-32

7.(2009福建,9)在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为 ( )

A.-5 B.1 C.2 D.3

答案:D

解析:不等式组x+y-1≥0,x-1≤0,ax-y+1≥0所围成的.区域如图所示.

∵其面积为2,∴|AC|=4,

∴C的坐标为(1,4),代入ax-y+1=0,

得a=3.故选D.

8.(2009陕西,4)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为

( )

A.3 B.2 C.6 D.23

答案:D

解析:∵直线的方程为y=3x,圆心为(0,2),半径r=2.

由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=23.故选D.

9.(2009西城4月,6)与直线x-y-4=0和圆x2+y2+2x-2y=0都相切的半径最小的圆的方程是 ( )

A.(x+1)2+(y+1)2=2 B.(x+1)2+(y+1)2=4

C.(x-1)2+(y+1)2=2 D.(x-1)2+(y+1)=4

答案:C

解析:圆x2+y2+2x-2y=0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x-y-4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排排除A、B,圆心(-1,1)到直线x-y-4=0的距离为62=32,则所求的圆的半径为2,故选C.

10.(2009安阳,6)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|OA→+OB→|=|OA→-OB→|,其中O为原点,则实数a的值为 ( )

A.2 B.-2C.2或-2 D.6或-6

答案:C

解析:由|OA→+OB→|=|OA→-OB→|得|OA→+OB→|2=|OA→-OB→|2,OA→OB→=0,OA→⊥OB→,三角形AOB为等腰直角三角形,圆心到直线的距离为2,即|a|2=2,a=±2,故选C.

11.(2009河南实验中学3月)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是 ( )

A.点在圆上 B.点在圆内C.点在圆外 D.不能确定

答案:C

解析:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则1a2+b2<1,a2+b2>1,点P(a,b)在圆C外部,故选C.

12.(2010保定市高三摸底考试)从原点向圆x2+(y-6)2=4作两条切线,则这两条切线夹角的大小为 ( )

A.π6 B.π2C.arccos79 D.arcsin229

答案:C

解析:如图,sin∠AOB=26=13,cos∠BOC=cos2∠AOB=1-2sin2∠AOB=1-29=79,∴∠BOC=arccos79,故选C.

二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。

高一数学基础题100道带答案

1.解:∵a5*a6*a7=3,a6*a7*a8=24

∴(a6)³=3,(a7)³=24=3×8,

∴(a8)³=3×8×8=192,

∴(a7*a8*a9)=(a8)³=192,

2.解:∵S5=10,S10=50

∴S10-S5=40,

于是(S10-S5)/S5=4

(S15-S10)/S5=4² =16

∴S15-S10=160

∴S15=160+S10=210

高一数学试卷电子版免费

在高中数学实践中,指数与指数幂也是高中数学考试常考的内容,下面是我给高一学生带来的数学指数与指数幂的计算题及答案解析,希望对你有帮助。

高一数学指数与指数幂的计算题(一)

1.将532写为根式,则正确的是()

A.352B.35

C.532 D.53

解析:选D.532=53.

2.根式 1a1a(式中a>0)的分数指数幂形式为()

A.a-43 B.a43

C.a-34 D.a34

解析:选C.1a1a= a-1•a-112= a-32=(a-32)12=a-34.

3.a-b2+5a-b5的值是()

A.0 B.2(a-b)

C.0或2(a-b) D.a-b

解析:选C.当a-b≥0时,

原式=a-b+a-b=2(a-b);

当a-b<0时,原式=b-a+a-b=0.

4.计算:(π)0+2-2×(214)12=________.

解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.

答案:118

高一数学指数与指数幂的计算题(二)

1.下列各式正确的是()

A.-32=-3 B.4a4=a

C.22=2 D.a0=1

解析:选C.根据根式的性质可知C正确.

4a4=|a|,a0=1条件为a≠0,故A,B,D错.

2.若(x-5)0有意义,则x的取值范围是()

A.x>5 B.x=5

C.x<5 D.x≠5

解析:选D.∵(x-5)0有意义,

∴x-5≠0,即x≠5.

3.若xy≠0,那么等式 4x2y3=-2xyy成立的条件是()

A.x>0,y>0 B.x>0,y<0

C.x<0,y>0 D.x<0,y<0

解析:选C.由y可知y>0,又∵x2=|x|,

∴当x<0时,x2=-x.

4.计算2n+12•122n+14n•8-2(n∈N*)的结果为()

A.164 B.22n+5

C.2n2-2n+6 D.(12)2n-7

解析:选D.2n+12•122n+14n•8-2=22n+2•2-2n-122n•23-2=2122n-6=27-2n=(12)2n-7.

5.化简 23-610-43+22得()

A.3+2 B.2+3

C.1+22 D.1+23

解析:选A.原式= 23-610-42+1

= 23-622-42+22= 23-62-2

= 9+62+2=3+2.X k b 1 . c o m

6.设a12-a-12=m,则a2+1a=()

A.m2-2 B.2-m2

C.m2+2 D.m2

解析:选C.将a12-a-12=m平方得(a12-a-12)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+1a=m2+2⇒a2+1a=m2+2.

7.根式a-a化成分数指数幂是________.

解析:∵-a≥0,∴a≤0,

∴a-a=--a2-a=--a3=-(-a)32.

答案:-(-a)32

8.化简11+62+11-62=________.

解析: 11+62+11-62=3+22+3-22=3+2+(3-2)=6.

答案:6

9.化简(3+2)2010•(3-2)2011=________.

解析:(3+2)2010•(3-2)2011

=[(3+2)(3-2)]2010•(3-2)

=12010•(3-2)= 3-2.

答案:3-2

10.化简求值:

(1)0.064-13-(-18)0+1634+0.2512;

(2)a-1+b-1ab-1(a,b≠0).

解:(1)原式=(0.43)-13-1+(24)34+(0.52)12

=0.4-1-1+8+12

=52+7+12=10.

(2)原式=1a+1b1ab=a+bab1ab=a+b.

11.已知x+y=12,xy=9,且x

解:x12-y12x12+y12=x+y-2xy12x-y.

∵x+y=12,xy=9,

则有(x-y)2=(x+y)2-4xy=108.

又x

代入原式可得结果为-33.

12.已知a2n=2+1,求a3n+a-3nan+a-n的值.

解:设an=t>0,则t2=2+1,a3n+a-3nan+a-n=t3+t-3t+t-1

=t+t-1t2-1+t-2t+t-1=t2-1+t-2

=2+1-1+12+1=22-1.

高一数学知识点

幂函数

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

以上就是高一数学考试题的全部内容,第41题 阿尔哈森弹子问题Alhazen's Billiard Problem 在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形。第42题 由共轭半径作椭圆An Ellipse from Conjugate Radii 已知两个共轭半径的大小和位置,作椭圆。

猜你喜欢