目录高中数学基本不等式 数学不等式基本公式 28个著名不等式 不等式的秘密电子版 数学不等式题及答案
考研七个基本不等式是线性代数部分不等式,不等式,平均不等式均值不等式,函数不等式,不等式证明题,基本不等式,用函数单调性证明不等式。
不等式的证明题作为微分的应用经常出现在考研题中,利用函数的单调性证明不等式是不等式证明的基本方法,有时需要两次大岁甚至三次连续使用该方法,其他方法可作为该方法的补充,辅助函数的构造仍是解决问题的关键。
利用拉格朗日中值定理证明不等式,对于不等式中含有fa的因子,可考虑用拉格朗日中值定理先处理一下。
利用泰勒公式证明不等式,如果要证明的不等式中,含有函数的二阶或二阶以上的导数,一般通过泰勒公式证滚庆睁明不等式,不等式证明的难点也是辅助函数的构造,一般可以通过要证差盯明的不等式分析得出要构造的辅助函数。
用符号>,<表示大小关系的式子,叫作不等式,用≠表示不等关系的式子也是不等式,构造适当的辅助函数是解决问题的基础,有时需要两次利用函数的单调性证明不等式,有时需要对区间(a,b)进行分割,分别在小区间上讨论。
不等式的基本公式:
a^2+b^2 ≥ 2ab。
√(ab)≤(a+b)/2 ≤(a^2+b^2)/2。
a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac。
a+b+c≥3×三次根号abc。
均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系和此的式子也是不等式。
其中,笑缺两边的解析式的公共定义域称为不等式的定义域。
整式不等式:
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有两个未知数(即二碰棚辩元),并且未知数的次数是1次(即一次)的不等式。
常用不等式公式:
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。
②√(ab)≤御碰瞎(a+b)/2。
③a²+b²≥2ab。
④ab≤(a+b)²/4。
⑤||a|-|b| |≤|a+b|≤|a|+|b|。
原理:
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果吵汪不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x) ③如果不等式F(x) ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。 基本不等式有: 1、三角不等式 三角不等式即在三角形中两边庆拿之和大于第三边,是平面几何不等式里最为基础的结论。广义托勒密定理岩差毁、欧拉定理及欧拉不等式最后都会用这一不等式导出不等关系。 2、平均值不等式 Hn≤Gn≤An≤Qn被称为平均值不等式,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。 3、二元均值不等式 二粗备元均值不等式表示两个正实数的算术平均数大于或等于它们的几何平均数。公式为:a^2+b^2≥2ab;推广有:一般地,若a1,a2,a3,···,an,是正实数,则有均值不等式: 4、杨氏不等式 杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,其一般形式为:假设a,b是非负实数,p>1,1/p+1/q=1,那么: 等号成立当且仅当a^p=b^q。 5、柯西不等式 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式(柯西-布尼亚科夫斯基-施瓦茨不等式),其一般形式为: 6、赫尔德不等式 赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hölder)。这是一条揭示Lp空间相互关系的基本不等式。设p>1,1/p+1/q=1,令a1,···,an和b1,···,bn是非负实数,则有: 参考资料来源:—不等式 1、三角不等式 三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子腊毕(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。 2、均值不等式 均值不等式,又名平均值不轮纤芹等式、平均竖罩不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。 3、柯西不等式 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。 但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。 4、几何平均不等式 根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。 算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。 5、杨氏不等式 杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。不等式的秘密电子版
数学不等式题及答案