数学的发现?数学发现的一般方法如下:1、观察和探索:数学发现的起点通常是观察和探索现象、模式或问题。通过观察和提出问题,可以激发思考并引发数学探索的兴趣。2、归纳和猜测:基于观察和探索的结果,进行归纳和猜测。通过整理数据、那么,数学的发现?一起来了解一下吧。
一.从数学的起源和发展来看:
恩格斯指出:从历史上看,数学中的原始概念——物品数和量及几何图形的概念——只是人在现实世界中,通过实际运用而后抽象的结果,而决不是在人脑里从纯粹思维中产生出来的。
几何学起源于测高量距、计算面积和体积。几何图形主要产生于人类的仿形造器的实践活动,即临摹自然物的形状来创造人们生存和发展所必然的生产和生活器皿。十七世纪,欧洲工业和航海业的迅速发展,以前创建的几何方法已不能满足实际需要,笛卡尔等将代数法与几何法进行有机地结合,发现可以将代数方法应用于几何问题的研究,从而一种新的数学学说——“解析几何”产生了。十八、十九世纪,由于工程、力学和大地测量等方面的需要;产生了画法几何、射影几何和微分几何。十九世纪二十年代产生的非欧几何学,虽然从纯理论产生,但进一步发展是在找到实际应用之后。从几何学的起源和发展来看:数学是以完全确定的现实的基本量的代表物和自然物形状的代表物作为研究的对象,在研究时又完全舍其具体内容和质的特点,仅保留其纯粹形态量的关系和空间形式的特点。由此可见:数学的起源和发展是建立在实际需要基础之上的,是在实践中逐步被发现,并随着实践的深入而发展、完善的。
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的中蠢滚量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我历悔侍们终于可以用计算证明肢吵几前含何学的定理;同时也可以用图形来形象的表示抽象的代数方程,而其后更发展出更加精微的微积分。
扩展资料
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
1、毕达哥拉斯:影响西方乃至世界的人物,第一个着重“数”的人,发现毕达哥拉斯定理(勾股定理)证明了正多面体的个数,建设了许多较有影响的社团毕达哥拉斯学派创始人。
2、欧几里得:欧几里得几何(欧式几何)的始祖,编写了几何原本。
3、阿基米德:写出几何体的表面积和体积的计算方法,著有《论球和圆柱》、《论螺线》、《沙的计算》、《论图形的平衡》。
4、祖冲之:创立《大明历》,把圆周率推算到小数点后七位。
5、笛卡尔:在数学发展上汪塌与费马共同创立了解析几何学,使数学进入了第一个重要时代——变量时代,他还发现了凸多面体边困喊圆、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。
6、莱布尼茨:与牛顿共同发现了微积分,使数学进入了第二个重要时代,提出了许多数学符号,是一个数学符号大师。
7、欧拉:提出函数的概念,创立分析力学,解决了柯尼斯堡七桥问题,给出欧拉公式,拓扑学的创始人。
8、高斯:至今为止最伟大的数学家,发现了数个后来才被人发现的定理(后人在他笔记上看到的),及独立研究出前人发现的定理,不求名利。
9、黎曼:非欧几何的黎曼几何的创始人。
10、希尔伯特:证明论、数理逻辑、区分数学与元数学之渗核差别的奠基人之一,发明和发展了大量的思想观念。
数学的起源和早期发展
数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以改穗及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计核滑卜算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并让明逐渐形成了相应的技术知识和有关的数学知识.
以上就是数学的发现的全部内容,1、毕达哥拉斯:影响西方乃至世界的人物,第一个着重“数”的人,发现毕达哥拉斯定理(勾股定理)证明了正多面体的个数,建设了许多较有影响的社团毕达哥拉斯学派创始人。2、欧几里得:欧几里得几何(欧式几何)的始祖。