当前位置: 首页 > 所有学科 > 数学

七下数学同步练习答案,哪位高手能给我泸科版初中数学同步练习,第一章检测(38-39)答案

  • 数学
  • 2023-09-25

七下数学同步练习答案?七年级下册数学同步《新课程课堂同步练习册·数学(华东版七年级下册)》参考答案第6章 一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x-15=25 3. x =3(12-x)三、那么,七下数学同步练习答案?一起来了解一下吧。

人教金学典同步练习册同步解析与测评七年级数学七年级下册人教版答案

1.B 2.D3.C4.A

5.AD和BCAC 内错ADBCEF同旁内ABEF BC 同位

6.略

7.(4 )大念 (6)

8.(3)

9.∠1和∠5 ∠2和∠6∠3和∠7∠4和∠8

10 180°-68°52′=111°8′

11 (1) 同旁内角雹伏(2) a和cb内错角(3)∠2和∠9(4)略

12.3 6 1224612 612(横着) n(n-1)÷2,2n(源仿携n-1),

n(n1),n(n1),

2013年七年级下册数学 《同步练习册》 (华东师范大学出版社)答案

1-1/3[x-(1+x)/3]=x/2-1/2[2x-(10-7x)/3]

1-1/3[x-1/3+x/3]=x/2-1/2[2x-10/3+7x/3]

1-1/3[4x/3-1/3]=x/2-1/2[13x/3-10/3]

1-4x/9-1/9=x/2-13x/6+10/6

4x/9-x/2+13/6=10/6-4-1/9

8x/18-9x/18+39x/18=30/18-18/18-2/18

38x/18=18/10

x=10/18÷38/18

x=10/18×18/38

x=5/19

(5x2-2x+3)+(3x2+5x+2)

x2y +2xy2

–y3 +3xy2

–4x2y-x3

3ab-4ab+8ab-7ab+ab=______.

7x-(5x-5y)-y=______.

23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.

-7x2+6x+13x2-4x-5x2=______.

2y+(-2y+5)-(3y+2)=______.

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-7*2-57/(3

53.(-7)*2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

(1)23+(-73)

(2)(-84)+(-49)

(3)7+(-2.04)

(4)4.23+(-7.57)

(5)(-7/3)+(-7/6)

(6)9/4+(-3/2)

(7)3.75+(2.25)+5/4

(8)-3.75+(+5/4)+(-1.5)

(9)(-17/4)+(-10/3)+(+13/3)+(11/3)

(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(11)(+1.3)- (+17/7)

(12)(-2)- (+2/3)

(13)| (-7.2)-(-6.3)+(1.1)|

(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)

(15)(-2/199)*(-7/6-3/2+8/3)

(16)4a)*(-3b)*(5c)*1/6

1)23+(-73)

(2)(-84)+(-49)

(3)7+(-2.04)

(4)4.23+(-7.57)

(5)(-7/3)+(-7/6)

(6)9/4+(-3/2)

(7)3.75+(2.25)+5/4

(8)-3.75+(+5/4)+(-1.5)

(9)(-17/4)+(-10/3)+(+13/3)+(11/3)

(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(11)(+1.3)-(+17/7)

(12)(-2)-(+2/3)

(13)|(-7.2)-(-6.3)+(1.1)|

(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)

(15)(-2/199)*(-7/6-3/2+8/3)

(16)4a)*(-3b)*(5c)*1/6

还有50道题,不过没有答案

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-7*2-57/(3

53.(-7)*2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

1.

a^3-2b^3+ab(2a-b)

=a^3+2a^2b-2b^3-ab^2

=a^2(a+2b)-b^2(2b+a)

=(a+2b)(a^2-b^2)

=(a+2b)(a+b)(a-b)

2.

(x^2+y^2)^2-4y(x^2+y^2)+4y^2

=(x^2+y^2-2y)^2

3.

(x^2+2x)^2+3(x^2+2x)+x^2+2x+3

=(x^2+2x)^2+4(x^2+2x)+3

=(x^2+2x+3)(x^2+2x+1)

=(x^2+2x+3)(x+1)^2

4.

(a+1)(a+2)+(2a+1)(a-2)-12

=a^2+3a+2+2a^2-3a-2-12

=3a^2-12

=3(a+2)(a-2)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

32.52-(6+9.728÷3.2)×2.5

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

有理数练习

练习一(B级)

(一)计算题:

(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

(二)用简便方法计算:

(1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,

求:(-X)+(-Y)+Z的值

(四)用">","0,则a-ba (C)若ba (D)若a<0,ba

-38)+52+118+(-62)=

(-32)+68+(-29)+(-68)=

(-21)+251+21+(-151)=

12+35+(-23)+0=

利用有理数的加法解下面2题

(1)王老伯上街时带有现金550元,购物用去260元,又去银行取款150元,现在王老伯身上还有多少现金?

(2)潜水艇原停在海面下800米处,先浮上150米,又下潜200米,这时潜水艇在海面下多少米处?

(-6)+8+(-4)+12

3又1/4+(-2又3/5)+5又3/4+(-8又2/5)

9+(-7)+10+(-3)+(-9)

27+(-26)+33+(-27)

(+4又5/8)+(-3.257)+(-4.625)

23+(-17)+6+(-22)

-2+3+1+(-3)+2+(-4)

23+(-73)

(-84)+(-49)

7+(-2.04)

4.23+(-7.57)

7/3)+(-7/6)

9/4+(-3/2)

3.75+(2.25)+5/4

-3.75+(+5/4)+(-1.5)

(-17/4)+(-10/3)+(+13/3)+(11/3)

(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(+1.3)-(+17/7)

(-2)-(+2/3)

|(-7.2)-(-6.3)+(1.1)|

|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)

(-4)(+6)(-7)

(-27)(-25)(-3)(-4)

0.001*(-0.1)*(1.1)

24*(-5/4)*(-12/15)*(-0.12)

(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7)

(-24/7)(11/8+7/3-3.75)*24

(-71/8)*(-23)-23*(-73/8)

(-7/15)*(-18)*(-45/14)

(-2.2)*(+1.5)*(-7/11)*(-2/7)

[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)

5+21*8/2-6-59

68/21-8-11*8+61

-2/9-7/9-56

4.6-(-3/4+1.6-4-3/4)

1/2+3+5/6-7/12

[2/3-4-1/4*(-0.4)]/1/3+2

22+(-4)+(-2)+4*3

-2*8-8*1/2+8/1/8

(2/3+1/2)/(-1/12)*(-12)

(-28)/(-6+4)+(-1)

2/(-2)+0/7-(-8)*(-2)

(1/4-5/6+1/3+2/3)/1/2

18-6/(-3)*(-2)

(5+3/8*8/30/(-2)-3

(-84)/2*(-3)/(-6)

1/2*(-4/15)/2/3

-3x+2y-5x-7y

有理数的加减混合运算

【【同步达纲练习】

1.选择题:

(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )

A.-2-3-5-4+3 B.-2+3+5-4+3

C.-2-3+5-4+3 D.-2-3-5+4+3

(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )

A.-10 B.-9 C.8 D.-23

(3)-7,-12,+2的代数和比它们的绝对值的和小( )

A.-38 B.-4 C.4 D.38

(4)若 +(b+3)2=0,则b-a- 的值是( )

A.-4 B.-2 C.-1 D.1

(5)下列说法正确的是( )

A.两个负数相减,等于绝对值相减

B.两个负数的差一定大于零

C.正数减去负数,实际是两个正数的代数和

D.负数减去正数,等于负数加上正数的绝对值

(6)算式-3-5不能读作( )

A.-3与5的差 B.-3与-5的和

C.-3与-5的差 D.-3减去5

2.填空题:(4′×4=16′)

(1)-4+7-9=- - + ;

(2)6-11+4+2=- + - + ;

(3)(-5)+(+8)-(+2)-(-3)= + - + ;

(4)5-(-3 )-(+7)-2 =5+ - - + - .

3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)

(1)(-21)+(+16)-(-13)-(+7)+(-6);

(2)-2 -(- )+(-0.5)+(+2)-(+ )-2.

4.计算题(6′×4=24′)

(1)-1+2-3+4-5+6-7;

(2)-50-28+(-24)-(-22);

(3)-19.8-(-20.3)-(+20.2)-10.8;

(4)0.25- +(-1 )-(+3 ).

5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′)

(1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z.

【素质优化训练】

(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;

(2)-(+2 )-(-1 )-(+3 )+(- )

=( 2 )+( 1 )+( 3 )+( );

(3)-14 5 (-3)=-12;

(4)-12 (-7) (-5) (-6)=-16;

(5)b-a-(+c)+(-d)= a b c d;

2.当x= ,y=- ,z=- 时,分别求出下列代数式的值;

(1)x-(-y)+(-z); (2)x+(-y)-(+z);

(3)-(-x)-y+z; (4)-x-(-y)+z.

3.就下列给的三组数,验证等式:

a-(b-c+d)=a-b+c-d是否成立.

(1)a=-2,b=-1,c=3,d=5;

(2)a=23 ,b=-8,c=-1 ,d=1 .

4.计算题

(1)-1-23.33-(+76.76);

(2)1-2*2*2*2;

(3)(-6-24.3)-(-12+9.1)+(0-2.1);

(4)-1+8-7

【生活实际运用】

某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?

参考答案:

【同步达纲练习】

1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2;

3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5

5.(1)-4; (2)4; (3)0.4; (4)-0.4.

【素质优化训练】

1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-.

2.(1) (2) (3) (4)-

3.(1) (2)都成立.

4.(1)-

(2)

(3)-29.5

(4)-1 第(4)题注意同号的数、互为相反数先分别结合。

哪位高手能给我泸科版初中数学同步练习,第一章检测(38-39)答案

三、解答题(共60分)

21.计算:(每小题颤卜拿2分,共8分)

(1)7 ⑵(3) (4)

22.解二元一次方程组:(每小题3分茄搭,共6分)

(1)(2)

23.因式分解(每小题3分,共12分)

⑴ ⑵⑶ ⑷

24.(本题6分) ……2/ 化简得 ……4/最后结果7………6/

25.(本题6分)(1)画对弊笑一个得2分……………4/ (2)面积是28……………6/

26. (本题6分)略

急需数学计算题,初一下册

七年级下册数学同步《新课程课堂同步练习册·数学(华东版七年级下册)》参考答案第6章 一元一次方程§6.1 从实际问题到方程一、1.D2. A3. A二、1.x = - 6 2. 2x-15=253. x =3(12-x)三、1.解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米,可列方程为:5.8-x=3x+0.62.解:设苹果买了x千克, 则可列方程为: 4x+3(5-x)=173.解:设原来课外数学小组的人数为x,则可列方程为:§6.2 解一元一次方程(一)一、1. D2. C 3.A二、1.x=-3,x=2.10 3. x=5三、1. x=72. x=4 3. x= 4. x= 5. x=3 6. y= §6.2 解一元一次方程(二)一、1. B 2. D3. A二、1.x=-5,y=32. 3. -3三、1. (1)x= (2)x=-2 (3)x=(4) x=-4(5)x = (6)x=-22. (1)设初一(2)班乒乓球小组共有x人, 得:9x-5=8x+2. 解得:x=7(2)48人3. (1)x=-7(2)x=-3§6.2 解一元一次方程(三)一、1. C2. D3.B 4.B二、1. 1 2.3. 10 三、1. (1) x=3(2) x=7 (3)x=–1(4)x= (5) x=4 (6) x= 2.3( x-2) -4(x- )=4解得x=-3 3.3元§6.2 解一元一次方程(四)一举物、1. B2.B3. D二、1. 5 2. ,3.4. 15三、1. (1)y = (2)y =6(3)(4)x= 2. 由方程3(5x-6)=3-20x解得x= ,把x= 代入方程a- x=2a+10x,得a =-8.∴ 当a=-8时,方程3(5x-6)=3-20x与方程a- x=2a+10x有相同的解.3. 解得:x=9§6.2 解一元一次方程(五)一、1.A2. B 3. C二、1.2(x +8)=402. 4,6,8 3.2x+10=6x+5 4. 15 5. 160元三、1. 设调往甲处x人, 根据题意,得27+x=2[19+(20-x)]. 解得:x=17 2. 设该用户5月份用水量为x吨,依题意,得1.2×6+2(x-6)=1.4 x.解得 x=8. 于是1.4x=11.2(元) . 3. 设学生人数为x人时,两家旅行社的收费一样多. 根据题意,正拍液得 240+120x=144(x+1),解得 x=4.§6.3 实践与探索(一贺睁)一、1. B 2. B3. A二、1. 362.3. 42,270三、1. 设原来两位数的个位上的数字为x,根据题意,得10x+11-x=10(11-x)+x+63. 解得 x=9. 则原来两位数是29.2.设儿童票售出x张,则成人票售出(700-x)张.依题意,得30x+50(700-x)=29000 . 解得:x=300, 则700-x=700-300=400人.则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A2. C 3. C二、1. x+ x+1+1=x 2. 23.75%3.2045三、1. 设乙每小时加工x个零件,依题意得,5(x+2)+4(2x+2)=200解得x=14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x元, 依题意得,3.6%x+4.77%(250000-x)=10170. 解得 x=150000.则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x个月能完成,依题意,得 解得x = 14. 小时第7章 二元一次方程组§7.1 二元一次方程组和它的解一、1. C 2. C3. B二、1.2. 53. 三、1. 设甲原来有x本书、乙原来有y本书,根据题意,得 2. 设每大件装x罐,每小件装y罐,依题意,得 .3. 设有x辆车,y个学生,依题意 §7.2二元一次方程组的解法(一)一、1. D 2. B3. B二、1. 2.略3. 20三、1. 2.3.4. §7.2二元一次方程组的解法(二)一、1. D 2. C 3. A二、1. ,2. 18,123. 三、1. 2.3. 4. 四、设甲、乙两种蔬菜的种植面积分别为x、y亩,依题意可得: 解这个方程组得 §7.2二元一次方程组的解法(三)一、1. B 2.A3.B4. C二、1.2. 9 3. 180,20 三、1. 2. 3. 四、设金、银牌分别为x枚、y枚,则铜牌为(y+7)枚, 依题意,得 解这个方程组, , 所以 y+7=21+7=28.§7.2二元一次方程组的解法(四)一、1. D2. C3. B二、1. 2. 3,3. -13三、1. 1. 2. 3. 4.5. 6. 四、设小明预订了B等级、C等级门票分别为x张和y张.依题意,得 解这个方程组得 §7.2二元一次方程组的解法(五)一、1. D 2. D 3. A二、1. 242. 6 3. 28元, 20元三、1. (1)加工类型项目精加工 粗加工加工的天数(天)获得的利润(元)6000x8000y(2)由(1)得: 解得∴答:这批蔬菜共有70吨. 2.设A种篮球每个 元,B种篮球每个 元,依题意,得 解得 3.设不打折前购买1件A商品和1件B商品需分别用x元,y元,依题意,得解这个方程组,得 因此50×16+50×4-960=40(元).§7.3实践与探索(一)一、1. C 2. D3.A二、1. 722. 3. 14万,28万三、1.设甲、乙两种商品的原销售价分别为x元,y元,依题意,得解得 2. 设沙包落在A区域得 分,落在B区域得 分, 根据题意,得解得∴答:小敏的四次总分为30分.3.(1)设A型洗衣机的售价为x元,B型洗衣机的售价为y元,则据题意,可列方程组 解得(2)小李实际付款: (元);小王实际付款: (元).§7.3实践与探索(二)一、1. A 2. A3.D二、1. 55米/分, 45米/分 2. 20,183.2,1三、1. 设这个种植场今年“妃子笑”荔枝收获x千克,“无核Ⅰ号”荔枝收获y千克.根据题意得解这个方程组得2.设一枚壹元硬币 克,一枚伍角硬币 克,依题意得: 解得:3.设原计划生产小麦x吨,生产玉米y吨,根据题意,得 解得 10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).4. 略5. 40吨第8章 一元一次不等式§8.1 认识不等式一、1.B 2.B 3.A二、1. <;>;> ; > 2. 2x+3<53. 4. ω≤50三、1.(1)2 -1>3;(2)a+7<0;(3) 2+ 2≥0;(4)≤-2;(5)∣ -4∣≥ ;(6)-2<2 +3<4. 2.80+20n>100+16n;n=6,7,8,…§8.2 解一元一次不等式(一)一、1.C2.A 3.C二、1.3,0,1,,- ; , ,0,1 2. x≥-1 3. -2<x<2 4. x<三、1.不能,因为x<0不是不等式3-x>0的所有解的集合,例如x=1也是不等式3-x>0的一个解.2.略§8.2 解一元一次不等式(二)一、1. B 2. C 3.A二、1.>;<;≤ 2. x≥-3 3. >三、1. x>3;2. x≥-2 3.x<4. x>5 四、x≥-1图略五、(1)(2)(3) §8.2 解一元一次不等式(三)一、1. C2.A二、1. x≤-32. x≤- 3. k>2三、1. (1)x>-2(2)x≤-3(3)x≥-1 (4)x<-2(5)x≤5 (6) x≤-1 (图略)2. x≥3.八个月§8.2 解一元一次不等式(四)一、1. B2. B3.A二、1. -3,-2,-1 2. 53. x≤14. 24三、1. 解不等式6(x-1)≤2(4x+3)得x≥-6,所以,能使6(x-1)的值不大于2(4x+3)的值的所有负整数x的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x张广告单,依题意得 80+0.3x≤1200,解得x≤3733. 答:该公司最多可印制3733张广告单.3. 设购买x把餐椅时到甲商场更优惠,当x>12时,得 200×12+50(x-12)<0.85(200×12+50x),解得x<32 所以12<x<32; 当0<x≤12时,得200×12<0.85(200×12+50x)解得x>,所以 <x ≤12 其整数解为9,10,11,12.所以购买大于或等于9张且小于32张餐椅时到甲商场更优惠.§8.3 一元一次不等式组(一)一、1. A2. B 二、1. x>-12. -1<x≤23. x≤-1 三、1. (1) x≥6(2)1<x<3 (3)4≤x<10 (4) x>2 (图略)2. 设幼儿园有x位小朋友,则这批玩具共有3x+59件,依题意得 1≤3x+59-5(x-1)≤3,解得30.5≤x≤31.5,因x为整数,所以x=31,3x+59=3×31+59=152(件)§8.3 一元一次不等式组(二)一、1. C2. B. 3.A 二、1. m≥2 2. <x<三、1. (1)3<x<5 (2)-2≤x<3(3)-2≤x<5 (4) x≥13(图略)2×3+2.5x<20 4×3+2x>202. 设苹果的单价为x元,依题意得解得4<x<5,因x恰为整数,所以x=5(元)(答略)3. -2<x≤3 正整数解是1,2,34. 设剩余经费还能为x名山区小学的学生每人购买一个书包和一件文化衫,依题意得 350≤1800-(18+30)x≤400,解得29≤x≤30,因人数应为整数,所以x=30.5.(1)这批货物有66吨 (2)用2辆载重为5吨的车,7辆载重为8吨的车.第九章多边形§9.1三角形(一)一、1.C 2.C 二、1. 3,1,1; 2. 直角 内3.12三、1. 8个;△ABC、△FDC、△ADC是锐角三角形;△ABD、△AFC是钝角三角形;△AEF、△AEC、△BEC是直角三角形.2.(1)略(2)三条中线交于一点,交点把每条中线分成的两条线段的比均为1:2. 3.不符合,因为三角形内角和应等于180°.4.∠A=95°∠B=52.5°∠C=32.5°§9.1三角形(二)一、1.C 2.B_______________________________________________________________________________________________________________________3. A.二、1.(1)45°;(2)20°,40°(3)25°,35°2. 165° 3. 20°4. 20° 5.3:2:1三、1. ∠BDC应为21°+ 32°+ 90°=143°(提示:作射线AD)2. 70° 3. 20°§9.1三角形(三)一、1.D 2.A二、1.12cm 2. 3个 3. 5

七年级下册数学人教版长江作业本同步练习册第九章单元测试答案

23.5二次函数的应用同步练习

第1题. 用长木条,做成如图的窗框(包括中间棱),若不计损耗,窗户的最大面积为4/3.

第2题. 在底边长,高的三角形铁板上,要截一块矩形铁板,如图所示.当矩形的边fc时,矩形铁板的面积最大,其最大面积为.

第3题. 如图,用长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积为()

A.45B.50C.60D.65

第4题. 用长的铝合金条制成如图形状的矩形窗框,为了使窗户的透光面积最大,那么这个窗户的最大透光面积是()

A.B.

C.D.

来源:学。科。网Z。X。X。K]

第5题. 用迅迹长的铝合金条制成如图形状的矩形窗框,为了使窗户的透光面积最大,那么这个窗户的最大透光面积是()

A.B.C.D.

第6题. 如图,用长的铝合金条制成下部为矩形、上部为半圆的窗框(包括窗棱),若使此窗户的透光面积最大,则最大透光面积为()

A.B.

C.D.[来源:学科网ZXXK]

第7题. 图是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横截面的地平线为轴,横断面的对称轴为轴,桥拱的部分为一段抛物线,顶点的高度为,和是两侧高为的支柱,和为两个方向的汽车通行区,宽都为,线段和为两段对称的上桥斜坡,其坡度为(即).

(1)求桥拱所在抛物线的函数表达式.

(2)和为支撑斜坡的立柱,其高都为,为相应的和两个方向的行人及非机动车通行区,试求和的宽.

(3)按规定,汽车通过桥下时,载货最高处和桥拱间的距离不得小于,今有一大型运货汽车,装载某大型设备后,其宽为,设备的顶部与地面距离为,它能否从(或)区域安全通过,请说明理由.

第8题. 如图所示,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子,恰在水面中心,,由处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流离距离为处达到距水面最大高度.

(1)以为坐标轴原点,为轴建立直角坐标系,求抛物线的函数表达式;

(2)水池半径至少要多少米,才能使喷出的水流不致落到池外?

(3)若水池的半径为,要使水流不落到池外,此时水流高度应达多少米(精确到)?

[来源:学+科+网Z+X+X+K]

第9题. 如图,在△中,,,,点在上运动,交于,于,设,梯形的面积为.

(1)求关于的函数表达式及自变量的取值范围;

(2)当梯形的面积为4时,求的值;

(3)梯形的面积是否有最大值,如果有,求出最大值;如果没有,请说明理由.

第10题. 某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?

答题要求:(1)请提供四条信息;

(2)不必求函数的表达式.

第11题. 用12m长的木条,做一个有一条横档的矩形窗子,为使透进的光线最多,则窗子的横档长为

m.

答案:2

第12题. 如图,用12m长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,应选择窗子的长、宽各为m.

答案:3、2

第13题. 如图,在矩形中,,,点从出发沿边向点以的速度移动,同时点从点出发沿边以的速度移动,分别到达,两点后就停止运动.

(1)设运动开始后第时,五边形的面积为,试写出与的函数关系式,并指出自变量的取毁让值范围.

(2)第几秒五边形的面积最小?是多少?

答案:(1)第时,,,,

故.

,.

(2),故当时,有最小值63,即第时,五边形的面积最小,为.

第14题. 如图,有长为的篱笆,现一面利用墙(墙的最大可用长度为)围成中间隔有一道篱笆的长方形花圃,设花圃的宽为,面积为.

(1)求与的函数关系式.

(2)要围成面积为的花圃,的长是多少米?[来源:学科网]

(3)能围成面积比还大的花圃吗?如果能,求出最大面积,并说明围法;如果不能,请说明理由.

答案:(1),故.

(2)由已知得,即,解得,,

当时,亩余并,不合题意,故,即.

(3).

,,随着的增大而减小.

故当时,有最大值.

能围成面积比还大的花圃.

围法:,花圃的长为,宽为.这时花圃面积最大,为.

第15题. 如图,在Rt△中,,,,点在斜边上,分别作于,于,设,.

(1)求与之间的函数关系,并求出的取值范围.

(2)设四边形的面积为,试求的最大值.

答案:(1)由已知得是矩形,故,.由得△△,,即,.

(2).

当时,有最大值8.

第16题. 某通讯器材公司销售一种市场需求较大的新型通讯产品.

已知每件产品的进价为40元,每年销售该种产品的总开支

(不含进价)总计120万元.在销售过程中发现,年销售量

(万件)与销售单位(元)之间存在着如图所示的一次函数关系.

(1)求关于的函数关系式;

(2)试写出该公司销售该种产品的年获利(万元)关于销售单价(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价为何值时,年获利最大?并求这个最大值;

(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

答案:解:(1)设,它过点

解得:

(2)

当元时,最大年获利为60万元.

(3)令,得,

整理得:

解得:,

由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间.

又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元.

第17题. 如图9,在平行四边形ABCD中,AD=4 cm,∠A=60°,BD⊥AD. 一动点P从A出发,以每秒1 cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD .

(1) 当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;

(2) 当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1 cm的速度匀速运动,在BC上以每秒2 cm的速度匀速运动. 过Q作直线QN,使QN∥PM. 设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为S cm2 .

① 求S关于t的函数关系式;

② (附加题) 求S的最大值.

答案:(1) 当点P运动2秒时,AP=2 cm,由∠A=60°,知AE=1,PE=.

∴ SΔAPE=.

(2) ① 当0≤t≤6时,点P与点Q都在AB上运动,设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=,AP=t+2,AG=1+,PG=.

∴ 此时两平行线截平行四边形ABCD的面积为S=.

当6≤t≤8时,点P在BC上运动,点Q仍在AB上运动. 设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=,DF=4-,QF=,BP=t-6,CP=10-t,PG=,

而BD=,故此时两平行线截平行四边形ABCD的面积为S=.

当8≤t≤10时,点P和点Q都在BC上运动. 设PM与DC交于点G,QN与DC交于点F,则CQ=20-2t,QF=(20-2t),CP=10-t,PG=.

∴ 此时两平行线截平行四边形ABCD的面积为S=.

故S关于t的函数关系式为

②(附加题)当0≤t≤6时,S的最大值为;

当6≤t≤8时,S的最大值为;

当8≤t≤10时,S的最大值为;

所以当t=8时,S有最大值为

第18题. 在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园,花园的一边靠墙,另三边用总长为40m的栅栏围成(如图所示).若设花园的(m),花园的面积为(m).

(1)求与之间的函数关系式,并写出自变量的取值范围;

(2)满足条件的花园面积能达到200 m吗?若能,求出此时的值;若不能,说明理由;

(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当取何值时,花园的面积最大?最大面积为多少?

解:(1)

(2)

(3)

答案:解:(1)根据题意得:

(2)当时,

解得:

此花园的面积不能达到200m

(3)的图像是开口向下的抛物线,对称轴为.

当时,的增大而增大

当有最大值

(m)

即:当时,花园面积最大,最大面积为187.5m

第19题. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管高出地面1.5m,在处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头与水流最高点的连线与地平面成的角,水流的最高点离地平面距离比喷水头离地平面距离高出2m,水流的落地点为.在建立如图所示的直角坐标系中:

(1) 求抛物线的函数解析式;

(2) 求水流的落地点到点的距离是多少m?

答案:解:在如图所建立的直角坐标系中,

由题意知,点的坐标为,

为等腰直角三角形,

点坐标为

(1)设抛物线的函数解析式为,

则抛物线过点顶点为,

当时,

由,得,

由,得

解之,得(舍去),.

所以抛物线的解析式为.

(2)点为抛物线的图象与轴的交点,

当时,即:,解得,

不合题意,舍去,取.

点坐标为(m).

答:水流的落地点到点的距离是m.

1. 答案:

2.答案:,3-6 :BCCC

7.答案:(1)设所在抛物线为,,,

,,.

(2),,,,和宽都为.

(3)在中,当时,.,

该货车可以从(或)区域安全通过.

8.答案:(1)依题意可知,.抛物线开口向下,

表达式为

(2)令,得(舍去),,水池半径至少.

(3)由于抛物线形状与上面相同,即二次项系数为,故可设此抛物线为,

求得,,水流的最大高度为.

[来源:Z§xx§k.Co9答案:(1)由,得△△,,.在中,,,,.

,.

(2)当时,.

(3)当时,梯形面积最大,为.

10答案:(1)2月份每千克销售价是3.5元(2)7月份每千克销售价是0.5元(3)1月到7月的销售价逐月下降(4)7月到12月的销售价逐月上升(5)2月与7月的销售差价是3元/kg(6)7月份销售价最低,1月份销售价最高(7)6月与8月、5月与9月、4月与10月、3月与11月、2月与12月的销售价相同(答案不唯一)

以上就是七下数学同步练习答案的全部内容,三、解答题(共60分)21.计算:(每小题2分,共8分)(1)7 ⑵ (3) (4)22.解二元一次方程组:(每小题3分,共6分)(1) (2)23.因式分解(每小题3分。

猜你喜欢