当前位置: 首页 > 所有学科 > 数学

初二数学单元测试答案,初二数学上册

  • 数学
  • 2023-10-24

初二数学单元测试答案?,第13题图) ,第14题图) ,第15题图) ,第16题图) ,第17题图)15. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,那么,初二数学单元测试答案?一起来了解一下吧。

八年级上册数学单元测试题及答案

学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。下面由我为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!

人教版八年级数学上册第1单元测试卷

第1章 分 式

类型之一 分式的概念

1.若分式2a+1有意义,则a的取值范围是 ()

A.a=0 B.a=1

C.a≠-1 D.a≠0

2.当a ________时,分式1a+2有意义.

3. 若式子2x-1-1的值为零,则x=________.

4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.

类型之二分式的基本性质

5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).

类型之三分式的计算与化简物陆

6.化简1x-3-x+1x2-1(x-3)的结果罩喊顷是 ()

A.2 B.2x-1

C.2x-3 D.x-4x-1

7.化简x(x-1)2-1(x-1)2的结果是______________.

8.化简:1+1x÷2x-1+x2x.

9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.

10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.

类型之四整数指数幂

11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;

(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.

类型之五科学记数法

12.在日本核电站事故期间,我国某监测点监测到极微量的渗裂人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .

类型之六 解分式方程

13.分式方程12x2-9-2x-3=1x+3的解为 ()

A.x=3 B.x=-3

C.无解 D.x=3或-3

14.解方程:2x-1=1x-2.

15.解方程:23x-1-1=36x-2.

类型之七分式方程的应用

16.李明到离家2.1千米的学校参加九年级联欢会, 到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍 ,且李明骑自行车到学校比 他从学校步行到家少用了20分钟.

(1)李明步行的速度是多少米/分?

(2)李明能否在联欢会开始前赶到学校?

17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.

人教版八年级数学上册第1单元测试卷答案

1.C2.≠-23.3

4.【解析】 要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.

解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.

5.=

6.B【解析】 原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.

7.1x-1

8.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.

9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.

当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)

10.【解析】 本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.

解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.

当x2-x=0时,原式=0-2=-2.

11.【解析】 先算乘方,再算乘除.

解:(1)原式=-1-7+3+5=0;

(2)原式=m-6n-2•2-2m4n6÷m-3n3

=14m-6+4-(-3)n-2+6-3=14mn.

12.9.63×10-5

13.C【解析】 方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.

检验:当x=3时,(x+3)(x-3)=0,

即x=3不是原分式方程的解,

故原方程无解.

14.解: 方程两边都乘(x-1)(x-2),得2( x-2)=x-1,

去括号,得2x-4=x-1,

移项,得x=3.

经检验,x=3是原方程的解,

所以原分式方程的解是x=3.

15.解:方程两边同时乘6x-2,得4-(6x-2)=3,

化 简,得-6x=-3,解得x=12.

检验:当x=12时,6x-2≠0,

所以x=12是原方程的解.

16.【解析】 (1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.

解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x米/分,

根据题意,得2 100x-2 1003x=20,解得x=70,

经检验,x=70是原方程的解,

所以李明步行的速度是70米/分.

(2)因为2 10070+2 1003×70+1=41(分)<42(分),

所以李明能在联欢会开始前赶到学校.

17.【解析】 本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲 工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.

解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,

依题意,得1 200x-1 2001.5x=10,

解得x=40,

经检验x=40是原方程的 根,

所以1.5x=60.

答:甲工厂每天加 工40件产品,乙工厂每天加工60件产品.

三年级上册语文练测答案

做八年级数学 单元测试 题前要先审题,保持平常心,考出最高分;以下是我为大家整理的初中八年级上册数学第2章特殊三角形单元测试题,希望你们喜欢。

初中八年级上册数学第2章特殊三角形单元试题

一、选择题

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠纤旁ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

10.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图察链2,AC=()

A. B.2 C. D.2

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上毁没橡,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是cm.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC=.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=.

初中八年级上册数学第2章特殊三角形单元测试题参考答案

一、选择题(共15小题)

1.正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()

A. B. C. D.

【考点】等边三角形的判定与性质.

【专题】压轴题.

【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D= ;同理求出S△CC1B1=S△BB1A1= ;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.

【解答】解:依题意画出图形,如下图所示:

过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.

又AC1=AC﹣CC1=3﹣1=2,AD=1,

∴点D为AC1的中点,

∴S△AA1C1=2S△AA1D=2× ×12= ;

同理可求得S△CC1B1=S△BB1A1= ,

∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1= ×32﹣3× = .

故选B.

【点评】本题考查等边三角形的判定与性质,难度不大.本题较宽,解题方法多种多样,同学们可以尝试不同的解题方法.

2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()

A.5 B. C. D.6

【考点】等边三角形的判定与性质;含30度角的直角三角形;勾股定理.

【专题】计算题;压轴题.

【分析】连结CD,直角三角形斜边上的中线性质得到CD=DA=DB,利用半径相等得到CD=CB=DB,可判断△CDB为等边三角形,则∠B=60°,所以∠A=30°,然后根据含30度的直角三角形三边的关系先计算出BC,再计算AC.

【解答】解:连结CD,如图,

∵∠C=90°,D为AB的中点,

∴CD=DA=DB,

而CD=CB,

∴CD=CB=DB,

∴△CDB为等边三角形,

∴∠B=60°,

∴∠A=30°,

∴BC= AB= ×10=5,

∴AC= BC=5 .

故选C.

【点评】本题考查了等边三角形的判定与性质:三边都相等的三角形为等边三角形;等边三角形的三个内角都等于60°.也考查了直角三角形斜边上的中线性质以及含30度的直角三角形三边的关系.

3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()

A.140° B.160° C.170° D.150°

【考点】直角三角形的性质.

【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.

【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,

∴∠COA=90°﹣20°=70°,

∴∠BOC=90°+70°=160°.

故选:B.

【点评】此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.

4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()

A.6 B.6 C.9 D.3

【考点】含30度角的直角三角形;线段垂直平分线的性质.

【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.

【解答】解:∵DE是AB的垂直平分线,

∴AD=BD,

∴∠DAE=∠B=30°,

∴∠ADC=60°,

∴∠CAD=30°,

∴AD为∠BAC的角平分线,

∵∠C=90°,DE⊥AB,

∴DE=CD=3,

∵∠B=30°,

∴BD=2DE=6,

∴BC=9,

故选C.

【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.

5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()

A.2 B.2 C.4 D.4

【考点】含30度角的直角三角形;线段垂直平分线的性质;勾股定理.

【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.

【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°,

∴∠ACB=60°,

∵DE垂直平分斜边AC,

∴AD=CD,

∴∠ACD=∠A=30°,

∴∠DCB=60°﹣30°=30°,

在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,

∴CD=2BD=2,

由勾股定理得:BC= = ,

在Rt△ABC中,∠B=90°,∠A=30°,BC= ,

∴AC=2BC=2 ,

故选A.

【点评】本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()

A. B.1 C. D.2

【考点】含30度角的直角三角形;角平分线的性质;线段垂直平分线的性质.

【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE= CE=1.

【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,

∴BE=CE=2,

∴∠B=∠DCE=30°,

∵CE平分∠ACB,

∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,

∴∠A=180°﹣∠B﹣∠ACB=90°.

在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,

∴AE= CE=1.

故选B.

【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.

7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()

A.0.5km B.0.6km C.0.9km D.1.2km

【考点】直角三角形斜边上的中线.

【专题】应用题.

【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.

【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,

∴MC= AB=AM=1.2km.

故选D.

【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.

8.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()

A.30° B.60° C.90° D.120°

【考点】直角三角形的性质.

【专题】常规题型.

【分析】根据直角三角形两锐角互余解答.

【解答】解:由题意得,剩下的三角形是直角三角形,

所以,∠1+∠2=90°.

故选:C.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()

A.2 B. C. D.

【考点】含30度角的直角三角形;勾股定理;等腰直角三角形.

【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.

【解答】解:在Rt△ACD中,∠A=45°,CD=1,

则AD=CD=1,

在Rt△CDB中,∠B=30°,CD=1,

则BD= ,

故AB=AD+BD= +1.

故选D.

【点评】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.

10.(2014•海南)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()

A.120° B.90° C.60° D.30°

【考点】直角三角形的性质.

【分析】根据直角三角形两锐角互余列式计算即可得解.

【解答】解:∵直角三角形中,一个锐角等于60°,

∴另一个锐角的度数=90°﹣60°=30°.

故选:D.

【点评】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.

11.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()

A. B.2 C. D.2

【考点】等边三角形的判定与性质;勾股定理的应用;正方形的性质.

【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.

【解答】解:如图1,

∵AB=BC=CD=DA,∠B=90°,

∴四边形ABCD是正方形,

连接AC,则AB2+BC2=AC2,

∴AB=BC= = = ,

如图2,∠B=60°,连接AC,

∴△ABC为等边三角形,

∴AC=AB=BC= .

【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.

12.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()

A.3cm B.6cm C. cm D. cm

【考点】含30度角的直角三角形;等腰直角三角形.

【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.

【解答】解:过点C作CD⊥AD,∴CD=3,

在直角三角形ADC中,

∵∠CAD=30°,

∴AC=2CD=2×3=6,

又∵三角板是有45°角的三角板,

∴AB=AC=6,

∴BC2=AB2+AC2=62+62=72,

∴BC=6 ,

故选:D.

【点评】此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.

13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()

A. cm B.2cm C.3cm D.4cm

【考点】含30度角的直角三角形.

【专题】常规题型.

【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.

【解答】解:∵ED⊥AB,∠A=30°,

∴AE=2ED,

∵AE=6cm,

∴ED=3cm,

∵∠ACB=90°,BE平分∠ABC,

∴ED=CE,

∴CE=3cm;

故选:C.

【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.

14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()

A.3 B.4 C.5 D.6

【考点】含30度角的直角三角形;等腰三角形的性质.

【专题】计算题.

【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.

【解答】解:过P作PD⊥OB,交OB于点D,

在Rt△OPD中,cos60°= = ,OP=12,

∴OD=6,

∵PM=PN,PD⊥MN,MN=2,

∴MD=ND= MN=1,

∴OM=OD﹣MD=6﹣1=5.

故选:C.

【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.

15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()

A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED

【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.

【专题】几何图形问题.

【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.

【解答】解:∵在△ABC中,∠C=90°,∠B=30°,

∴∠CAB=60°,

∵AD平分∠CAB,

∴∠CAD=∠BAD=30°,

∴∠CAD=∠BAD=∠B,

∴AD=BD,AD=2CD,

∴BD=2CD,

根据已知不能推出CD=DE,

即只有D错误,选项A、B、C的答案都正确;

故选:D.

【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.

二、填空题

16.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是18cm.

【考点】等边三角形的判定与性质.

【专题】应用题.

【分析】根据有一个角是60°的等腰三角形的等边三角形进行解答即可.

【解答】解:∵OA=OB,∠AOB=60°,

∴△AOB是等边三角形,

∴AB=OA=OB=18cm,

故答案为:18

【点评】此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.

17.在△ABC中,∠B=30°,AB=12,AC=6,则BC=6 .

【考点】含30度角的直角三角形;勾股定理.

【分析】由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.

【解答】解:∵∠B=30°,AB=12,AC=6,

∴△ABC是直角三角形,

∴BC= = =6 ,

故答案为:6 .°

【点评】此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.

18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=2.

【考点】含30度角的直角三角形;角平分线的性质.

【分析】根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.

【解答】解:∵∠C=90°,∠B=30°,

∴∠CAB=60°,

AD平分∠CAB,

∴∠BAD=30°,

∴BD=AD=2CD=2,

故答案为2.

【点评】本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.

19.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=8.

【考点】含30度角的直角三角形;正方形的性质.

【分析】先由正方形的性质可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根据平行线的性质及角的和差得出∠E=∠BAE=∠BAC﹣∠CAE=30°.然后在Rt△ADE中,根据30°角所对的直角边等于斜边的一半即可得到AE=2AD=8.

【解答】解:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,

∴∠BAC=45°,AB∥DC,∠ADC=90°,

∵∠CAE=15°,

∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.

∵在Rt△ADE中,∠ADE=90°,∠E=30°,

∴AE=2AD=8.

故答案为8.

【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了正方形的性质,平行线的性质.求出∠E=30°是解题的关键.

20.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=5.

【考点】含30度角的直角三角形;矩形的性质.

【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.

【解答】解:∵四边形ABCD是矩形,

∴OA=OB

又∵∠AOB=60°

∴△AOB是等边三角形.

∴AB=OA= AC=5,

故答案是:5.

【点评】本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.

初二数学知识点归纳

认认真真做八年级数学 单元测试 题,不能敷衍了事。以下是我为大家整理的八年级上册数学扇形统计图试卷,希望你们喜欢。

八年级上册数学扇形统计图试题

1. 小红郑耐凯同学将自己5月份的各项消费情况制亩启作成扇形统计图(如图),从图中可看出()

A.各项消费金额占消费总金额的百分比 B.各项消费的金额

C.消费的总金额 D.各项消费金额的增减变化情况

2.如图是某班学生参加兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()

A.棋类组 B.演唱组 C.书法组 D.美术组

3.如图,一个正在绘制的扇形统计图,整个圆表示某班参加体育活动的总人数,那么表示参加实心球训练的人数占总人数的35%的扇形是()

A.E B.F C.G D.H

4.我省在家电下乡活动中,冰箱、彩电、洗衣机和空调这四种家电的销售比例为5∶4∶2∶1,其中空调已销售了15万台.根据此信息绘制的扇形统计图中,已销售冰箱部分所对应的圆心角的度数和四种家电销售的总台数分别为()

A.150°和180万台 B.150°和75万台

C.180°和180万台 D.180°和75万台

5.某实验中学八年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是______度.

6.如图,为某林场所栽树的扇形统计图,根据扇形统计图填空.

(1)松树棵数占________; (2)已知杨树种了1200棵,那么柳树种了______棵.

7.某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是________支.

8.小明学完了统计知识后,从“中国环境保护网”上查询到他所居住地2014年全年的空气质量级别资料,用简单随机抽样的方法选取28天,并列出下表:请你根据以上信息画出该地空气质量级别的扇形统计图.

空气质量级别 优 良 轻度污染 中度污染 重度污染

天数 7 14 7 0 0

9.某校九年级(1)班所有学生参加2014年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A,B,C,D四等,并绘制成如图所示的条形统计图和扇形统计图.(未完成)根据图中所给信息,下列判断:①九年级(1)班参加体育测试的学生有50人;②等级B部分所占的百分比最大;③等级C的学生有10人;④若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.其中判断正确的是()

A.①③④喊唤 B.②③④ C.①② D.①②③④

10.某校根据去年九年级学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为________.

11.为了解某校1800名学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取部分学生进行调查,结果如图,则该校喜爱体育节目的学生大约有________名.

12.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其它”活动的人数占总人数的________%.

13.在一次考试中,从全体参加考试的1000名学生中随机抽取了120名学生的答题卷进行统计分析.其中,某个单项选择题答题情况如下表(没有多选和不选):

选项 A B C D

选择人数 15 5 90 10

(1)根据统计表画出扇形统计图;

要求:画图前先求角;画图可借助任何,其中一个角的作图用尺规作图(保留痕迹,不写作法和证明);统计图中标注角度.

(2)如果这个选择题满分是3分,正确的选项是C,则估计全体学生该题的平均得分是多少?

14.贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:

甲校参加汇报演出的师生人数统计表

百分比 人数

话剧 50% m

演讲 12% 6

其他 n 19

(1)m=________,n=________;

(2)计算乙校的扇形统计图中“话剧”的圆心角度数;

(3)哪个学校参加“话剧”的师生人数多?说明理由.

八年级上册数学扇形统计图试卷参考答案

1. A

2. D

3. A

4. A

5. 180

6. (1)55% (2)1500

7. 150

8. 图略

9. D

10. 108°

11. 360

12. 20

13. (1)根据图表数据得出:选A的所占圆心角为:15120×360°=45°;选B的所占圆心角为:5120×360°=15°;选C的所占圆心角为:90120×360°=270°;选D的所占圆心角为:10120×360°=30°.如图所示

(2)∵选择题满分是3分,正确的选项是C,∴全体学生该题的平均得分为:90×3120=2.25(分)答:全体学生该题的平均得分是2.25分

14. (1)∵甲校参加演讲的有6人,占12%,∴甲校参加本次活动的共有[JP]6÷12%=50(人),∴m=50×50%=25(人),n=19÷50×100%=38%

(2)乙校的扇形统计图中“话剧”的圆心角度数为:360°×(1-60%-10%)=108°

(3)(150-50)×30%=30(人),∵30>25,∴乙校参加“话剧”的师生人数多

初二数学题库及答案

我们做八年级数学 单元测试 题时要仔细认真的做,直道自己能举一反三。下面我给大家分享一些8年级数学上册第11章三角形测试题人教版,大家快来跟我一起看看吧。

8年级数学上册第11章三角形测试题

一、填空题

1.在△ABC中,∠A=40°,∠B=∠C,则∠C=°.

2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:,,(单位做神:cm).

3.如果等腰三角形的一个底角是40°,它的顶角是.

4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是.

5.△ABC中,若∠A=35°,∠B=65°,则∠C=;若∠A=120°,∠B=2∠C,则∠C=.

6.三角形三个内角中,最多有个直角,最多有个钝角,最多有个锐角,至少有个锐角.

7.三角形按角的不同分类,可分为三角形,三角形和三角形.

8.一个三角形三个内角度数的比是2:3:4,那么这个三角形是三角形.

9.在△ABC中,∠A﹣∠B=36°,∠C=2∠B,则∠A=,∠B=,∠C=.

10.若△ABC中,∠A+∠B=∠C,则此三角形是三角形.

11.已知等腰三角形的两个内角的度灶数数之比为1:2,则这个等腰三角形的顶角为.

12.已知△ABC为等腰三角形,①当它的两个边长分别为8cm和3cm时,它的周长为;②如果它的一边长为4cm,一边的长为6cm,则周长为.

二、判断题.

13.有一个角是钝角的三角形就是钝角三角形.(判断对错)

14.一个等腰三角形的顶角是80°,它的两个底角都是60°.(判断对错)

15.两个内角和是90°的纯辩亏三角形是直角三角形.(判断对错)

16.一个三角形最多只能有一个钝角或一个直角.(判断对错)

17.在锐角三角形中,任意的两个锐角之和一定要大于90°.(判断对错)

18.一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形.(判断对错)

三、选择题

19.如果三角形的三个内角的度数比是2:3:4,则它是()

A.锐角三角形 B.钝角三角形

C.直角三角形 D.钝角或直角三角形

20.下列说法正确的是()

A.三角形的内角中最多有一个锐角

B.三角形的内角中最多有两个锐角

C.三角形的内角中最多有一个直角

D.三角形的内角都大于60°

21.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为()

A.100° B.120° C.140° D.160°

22.已知三角形两个内角的差等于第三个内角,则它是()

A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形

23.等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为()

A.10cm或6cm B.10cm C.6cm D.8cm或6cm

24.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()

A.4cm B.5cm C.9cm D.13cm

25.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形()

A.一定有一个内角为45° B.一定有一个内角为60°

C.一定是直角三角形 D.一定是钝角三角形

26.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有()

A.1个 B.2个 C.3个 D.4个

27.已知三角形的三边分别为2,a,4,那么a的取值范围是()

A.1

28.在△ABC中,∠A= ∠B= ∠C,则此三角形是()

A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形

四、解答题

29.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.

(1)给出下列四个条件:

①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB

请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;

你选出的条件是.

证明:

30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.

(1)图中有几对全等的三角形请一一列出;

(2)选择一对你认为全等的三角形进行证明.

31.如图所示,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.

32.如图,BF⊥AC,CE⊥AB,BE=CF,BF、CE交于点D,求证:AD平分∠BAC.

33.如图,已知∠A=∠B,CE∥DA,CE交AB于点E.求证:CE=CB.

34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.

8年级数学上册第11章三角形测试题人教版参考答案

一、填空题

1.在△ABC中,∠A=40°,∠B=∠C,则∠C=70°.

【考点】三角形内角和定理.

【分析】由三角形的内角和定理直接列式计算,即可解决问题.

【解答】解:∵∠A+∠B+∠C=180°,且∠A=40°,∠B=∠C,

∴∠C=(180°﹣40°)÷2=70°,

故答案为70.

【点评】该题主要考查了三角形的内角和定理及其应用问题;灵活运用是解题的关键.

2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:6,11,16(单位:cm).

【考点】三角形三边关系.

【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.

【解答】解:每三根组合,有5,6,11;5,6,16;11,16,5;11,6,16四种情况.

根据三角形的三边关系,得其中只有11,6,16能组成三角形.

【点评】此题要特别注意看是否符合三角形的三边关系.

3.如果等腰三角形的一个底角是40°,它的顶角是100°.

【考点】等腰三角形的性质.

【分析】等腰三角形的两个底角相等,根据三角形的内角和即可解决问题.

【解答】解:180°﹣40°×2=100°,

答:顶角是100°.

故答案为:100°

【点评】此题考查了等腰三角形的性质和三角形内角和的应用,解答此题的关键:根据三角形的内角和、等腰三角形的两底角和顶角三个量之间的关系进行解答即可.

4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是2cm

第八单元测试卷答案

11.30 cm 解析:当50 cm长的木棒构成直角三角形的斜边时,设最短的木棒长为x cm(x>0),由勾股定理,得 ,解得x=30.

12.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,

∵ BC=16,∴

∵ AD⊥BC,∴ ∠ADB=90°.

在Rt△ADB中,∵ AB=AC=17,由勾股定理,得 .∴ AD=15 cm.

13.108 解析:因为 ,所以△ 是直角三角形,且两条直角边长分别为9,12,则用两个这样的三角形拼成的长方形的面积为 .

14.612 解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12 m,所以楼道上铺地毯的长度为5+12=17(m).因为楼梯宽为2 m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元).

15.6 解析:∵ △ABH≌△BCG≌△CDF≌△DAE,∴ AH=DE.

又∵ 四边形ABCD和EFGH都是正方形,

∴ AD=AB=10,HE=EF=2,且AE⊥DE.

∴ 在Rt△ADE中, ,∴ + =

∴ + = ,∴ AH=6或AH= - 8(不合题意,舍去).

16.126或66 解析:本题分两种情况.

(1)如图(1),在锐角△ABC中,AB=13,AC=20,BC边上的高AD=12,

第16题答图(1)

在Rt△ABD中,AB=13,AD=12,由勾股定理,得 =25,∴ BD=5.在Rt△ACD中,AC=20,AD=12,

由勾股定理,得 =256,

∴ CD=16,州戚∴ BC的长为BD+DC=5+16=21,

△ABC的面积= •BC•AD= ×21×12=126. (2)如图(2),在钝角档圆△ABC中,AB=13,AC=20,BC边上的高AD=12,

第16题答图(2)

在Rt△ABD中,AB=13,AD=12,由勾股定理,得 =25,∴ BD=5. 在Rt△ACD中,AC=20,AD=12,由勾股定理,得 =256,∴ CD=16.∴ BC=DC-BD=16-5=11.

△ABC的面积= •BC•AD= ×11×12=66.

综上,△ABC的面积是126或66. 17.49 解析:正方形A,B,C,D的面积之和是最大的正方形的面积,行迹塌即49 .

18.4 解析:在Rt△ABC中,∠C=90°,由勾股定理,得 ,所以AB=5.他们仅仅少走了 (步).

19.解:如图,在△ABC中,AB=15,BC=14,AC=13,

设 ,∴ .

由勾股定理,得 ,

∴ ,

解得 .

∴ .

∴ .

20.解:在Rt△ 中,由勾股定理,得 ,

即 ,解得AC=3,或AC=-3(舍去).

因为每天凿隧道0.2 km,

所以凿隧道用的时间为3÷0.2=15(天).

答:15天才能把隧道AC凿通.

21.解:(1)因为三个内角的比是1︰2︰3,

所以设三个内角的度数分别为k,2k,3k(k≠0).

由k+2k+3k=180°,得k=30°,

所以三个内角的度数分别为30°,60°,90°.

(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.

设另外一条直角边长为x,则 ,即 .

所以另外一条边长的平方为3.

22.分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.

解:设旗杆未折断部分的长为x m,则折断部分的长为(16-x)m,

根据勾股定理,得 ,

解得 ,即旗杆在离底部6 m处断裂.

23.分析:从表中的数据找到规律.

解:(1)n2-1 2n n2+1

(2)以a,b,c为边长的三角形是直角三角形.

理由如下:

∵ a2+b2=(n2-1)2+4n2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2=c2,

∴ 以a,b,c为边长的三角形是直角三角形.

24.分析:(1)因为将△ 翻折得到△ ,所以 ,则在Rt△ 中,可求得 的长,从而 的长可求;

(2)由于 ,可设 的长为 ,在Rt△ 中,利用勾股定理解直角三角形即可.

解:(1)由题意,得AF=AD=BC=10 cm,

在Rt△ABF中,∠B=90°,

∵ cm,∴ ,BF=6 cm,

∴ (cm). (2)由题意,得 ,设 的长为 ,则 .

在Rt△ 中,∠C=90°,

由勾股定理,得 即 ,

解得 ,即 的长为5 cm.

25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.

解:蚂蚁沿如图(1)所示的路线爬行时,长方形 长为 ,宽为 ,

连接 ,则构成直角三角形.

由勾股定理,得 . 蚂蚁沿如图(2)所示的路线爬行时,长方形 长为 ,宽为 ,

连接 ,则构成直角三角形.

由勾股定理,

得 , .

蚂蚁沿如图(3)所示的路线爬行时,长方形 长为 宽为AB=2,连接 ,则构成直角三角形.

由勾股定理,得

∴ 蚂蚁从 点出发穿过 到达 点时路程最短,最短路程是5.

以上就是初二数学单元测试答案的全部内容,34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.8年级数学上册第11章三角形测试题人教版参考答案 一、填空题 1.在△ABC中,∠A=40°,∠B=∠C。

猜你喜欢