当前位置: 首页 > 所有学科 > 数学

数学自然数是什么意思,自然数的定义和概念

  • 数学
  • 2024-02-20

数学自然数是什么意思?自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。自然数的意思 自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,那么,数学自然数是什么意思?一起来了解一下吧。

自然数是什么概念

1994年11月国家技术监督局发布的《中华人民共和国国家标准,物理科学和技术中使用的数学符号》中,将自然数集记为

N={0,1,2,3,…}

而将原自然数集称为非零自然数集

N+(或N*)={1,2,3,…}.

自然数集扩充后,文[1]中的自然数的基数理论以及其他一些与自然数有关的理论问题随之起变化,这给数学教学与数学应用产生一定影响.为此,我们将自然数的基数理论讨论如下.

1

对自然数的来源的认识

由于自然数的概念是建立在基数理论[1]之上的,基数是由集合对等而来.最初人类对物品的计数,是将物品与人的手指(脚趾)数形成映射关系,物品既然存在“多少”,也就存在“有”或“没有”,“没有”即可认为是空集,其计数应当是零.这就是说,零与非零自然数是人类认识同步的客观现象,而并非是6世纪才有零的概念.也许这就是将零补充到自然数集的缘由之一.事实上,国外许多文献和专家早就主张将零作为第一个自然数.

2

自然数的新概念

自然数扩充后,包含了空集的基数,要去掉原有自然数定义中“非空”的限制条件,即定义1

有限集合的基数叫做自然数.根据对等的概念,可以建立N与N+的一一映射关系f:

N↓={0,↓1,↓2,↓3,↓…}N+={1,2,3,4,…}

由此可见,N与N+有相同的基数,即|N|=|N+|.

3

自然数的四则运算

自然数加法、乘法运算义定只要去掉原有定义中的“非空”二字即可,亦即

定义2

设有有限集合A和B,且A∩B=Φ(A,B分离).若记A∪B=C,集合A,B,C的基数分别是a,b和c,那么c叫做a与b的和,记作

a+b=c.

a和b叫做加数.求两个数的和的运算叫做加法.

定义3

设有m(m>1)个相互对等,且两两分离的有限集合A1,A2,A3,…,Am,它们的基数都是n.又设A=Umi=1Ai,A的基数记作

a,即有a=n+n+…+nm个,这个a就叫做n乘以m的积,记作a=n×m,或a=n.m,或a=nm.n称为被乘数,m称为乘数.求两个数积的运算叫做乘法.

对于数0,1,补充义定:n和0的积是0,n和1的积是n,即n.0=0,n.1=1.

在上述定义里,加法、乘法的交换律、结合律,乘法对于加法的分配律仍然成立.

关于减法运算的定义,除了去掉“非空”二字外,集合B可以是A本身,即

定义4

设有有限集合A和B,B

A,若记A-B=C,且A,B,C的基数分别记作a,b,c,那么c叫做a,b的差,记作

a-b=c.

a叫做被减数,b叫做减数.求两个数差的运算叫做减法.

除法是乘法的逆运算,在原定义中要限定“除数非零”即可.

定义5

设a,b(b≠0)是两个自然数,如果存在一个自然数c,使得bc=a,那么c叫做a除以b所得的商,记作

ab=c,或a÷b=c.

a称为被除数,b称为除数.求两个数商的运算叫做除法.

4

自然数的有关性质

(1)自然数的有序性决定了自然数可以比较大小,即

定义6

如果两个有限集合A,B的基数分别为a,b,那么

当A

A′,A′~B时,a>b;

当B′

B,A~B′时,a

当A~B时,a=b.

自然数有反身律:a=a;对称律:若a=b,则b=a;传递律:若a≥b,b≥c,则a≥c.

自然数从小到大的排序为

0,1,2,3,….

(2)自然数的单调性反映了不等量关系中的运算性质,扩充后的自然数其单调性有了局部性改变,即

若a≥b,则

a+c≥b+c;

当c>0时,ac≥bc,

当c=0时,ac=bc.

对于与自然数有关的数学论证与原理,应随自然数扩充后作相应调整.如数学归纳法证明的步骤应是

验证n=0时,命题成立;

假设n=k-1时成立,则n=k时命题成立.

自然数的基本概念是什么

自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。

自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。

自然数集N是指满足以下条件的集合:

①N中有一个元素,记作1。

②N中每一个元素都能在 N 中找到一个元素作为它的后继者。

③1是0的后继者。④0不是任何元素的后继者。

⑤不同元素有不同的后继者。

⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。

扩展资料:

自然数性质

1、对自然数可以定义加法和乘法。其中,加法运算“+”定义为:a + 0 = a;

a + S(x) = S(a +x), 其中,S(x)表示x的后继者。

如果我们将S(0)定义为符号“1”,那么b + 1 = b + S(0) = S( b + 0 ) = S(b),即,“+1”运算可求得任意自然数的后继者。

同理,乘法运算“×”定义为:a × 0 = 0; a × S(b) = a × b + a

自然数的减法和除法可以由类似加法和乘法的逆的方式定义。

所有自然数的和

【拼音】:zì

rán

shù

【英译】:natural

number

【概念】:用以计量事物的件数或表示事物次序的数

即用数码0,1,2,3,4,……所表示的数

。表示物体个数的数叫自然数,自然数由0开始(包括0),

一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。

【定义】:(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义)

自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在

N

中找到一个元素作为它的后继者。③

1是0的后继者。④0不是任何元素的后继者。

⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。

基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数

0属于自然数吗

自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。

自然数的意思

自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。

自然数的性质和特点

1、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。

2、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。

3、传递性:设 n1,n2,n3 都是自然数,若 n1>n2,n2>n3,那么 n1>n3。

4、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1

5、最小数原理:自然数集合的任一非空子集中必有最小的数。

自然数的数学定义

自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。

自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。

自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数 而不是自然数。自然数是无限的。

扩展资料:

自然数概念:

基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。

这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。

参考资料来源:百度百科-自然数概念

参考资料来源:百度百科-自然数

以上就是数学自然数是什么意思的全部内容,自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数。

猜你喜欢